Papers
Topics
Authors
Recent
Search
2000 character limit reached

Instance-Level Trojan Attacks on Visual Question Answering via Adversarial Learning in Neuron Activation Space

Published 2 Apr 2023 in cs.CV and cs.AI | (2304.00436v2)

Abstract: Trojan attacks embed perturbations in input data leading to malicious behavior in neural network models. A combination of various Trojans in different modalities enables an adversary to mount a sophisticated attack on multimodal learning such as Visual Question Answering (VQA). However, multimodal Trojans in conventional methods are susceptible to parameter adjustment during processes such as fine-tuning. To this end, we propose an instance-level multimodal Trojan attack on VQA that efficiently adapts to fine-tuned models through a dual-modality adversarial learning method. This method compromises two specific neurons in a specific perturbation layer in the pretrained model to produce overly large neuron activations. Then, a malicious correlation between these overactive neurons and the malicious output of a fine-tuned model is established through adversarial learning. Extensive experiments are conducted using the VQA-v2 dataset, based on a wide range of metrics including sample efficiency, stealthiness, and robustness. The proposed attack demonstrates enhanced performance with diverse vision and text Trojans tailored for each sample. We demonstrate that the proposed attack can be efficiently adapted to different fine-tuned models, by injecting only a few shots of Trojan samples. Moreover, we investigate the attack performance under conventional defenses, where the defenses cannot effectively mitigate the attack.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.