Implications of GWTC-3 on primordial black holes from vacuum bubbles (2303.16810v3)
Abstract: The population of black holes inferred from the detection of gravitational waves by the LIGO-Virgo-KAGRA Collaboration has revealed interesting features in the properties of black holes in the Universe. We analyze the GWTC-3 dataset assuming the detected black holes in each event had an either astrophysical or primordial origin. In particular, we consider astrophysical black holes described by the fiducial \textsc{Power Law + Peak} distribution and primordial black holes whose mass function obeys a broken power law. These primordial black holes can be generated by vacuum bubbles that nucleate during inflation. We find that astrophysical black holes dominate the events with mass less than $\sim 30M_\odot$, whereas primordial black holes are responsible for the massive end, and also for the peak at $\sim 30M_\odot$ in the mass distribution. More than half of the observed events could come from primordial black hole mergers. We also discuss the implications on the primordial black hole formation mechanism and the underlying inflationary model.
- B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019a), arXiv:1811.12907 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, (2020), arXiv:2010.14527 [gr-qc] .
- R. Abbott et al. (LIGO Scientific, Virgo), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913, L7 (2021b), arXiv:2010.14533 [astro-ph.HE] .
- I. Mandel and A. Farmer, Merging stellar-mass binary black holes, Phys. Rept. 955, 1 (2022), arXiv:1806.05820 [astro-ph.HE] .
- M. Mapelli, Formation Channels of Single and Binary Stellar-Mass Black Holes (2021) arXiv:2106.00699 [astro-ph.HE] .
- S. E. Woosley, Pulsational Pair-Instability Supernovae, Astrophys. J. 836, 244 (2017), arXiv:1608.08939 [astro-ph.HE] .
- M. Y. Khlopov, Primordial Black Holes, Res. Astron. Astrophys. 10, 495 (2010), arXiv:0801.0116 [astro-ph] .
- S. Clesse and J. García-Bellido, The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO, Phys. Dark Univ. 15, 142 (2017), arXiv:1603.05234 [astro-ph.CO] .
- J. Kristiano and J. Yokoyama, Ruling Out Primordial Black Hole Formation From Single-Field Inflation, (2022), arXiv:2211.03395 [hep-th] .
- K. Inomata, M. Braglia, and X. Chen, Questions on calculation of primordial power spectrum with large spikes: the resonance model case, (2022), arXiv:2211.02586 [astro-ph.CO] .
- A. Riotto, The Primordial Black Hole Formation from Single-Field Inflation is Not Ruled Out, (2023), arXiv:2301.00599 [astro-ph.CO] .
- S. Choudhury, M. R. Gangopadhyay, and M. Sami, No-go for the formation of heavy mass Primordial Black Holes in Single Field Inflation, (2023), arXiv:2301.10000 [astro-ph.CO] .
- J. Kristiano and J. Yokoyama, Response to criticism on ”Ruling Out Primordial Black Hole Formation From Single-Field Inflation”: A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation, (2023), arXiv:2303.00341 [hep-th] .
- A. Dolgov and J. Silk, Baryon isocurvature fluctuations at small scales and baryonic dark matter, Phys. Rev. D 47, 4244 (1993).
- A. D. Gow, C. T. Byrnes, and A. Hall, Accurate model for the primordial black hole mass distribution from a peak in the power spectrum, Phys. Rev. D 105, 023503 (2022), arXiv:2009.03204 [astro-ph.CO] .
- J. Garriga, A. Vilenkin, and J. Zhang, Black holes and the multiverse, JCAP 02, 064, arXiv:1512.01819 [hep-th] .
- R. Basu, A. H. Guth, and A. Vilenkin, Quantum creation of topological defects during inflation, Phys. Rev. D 44, 340 (1991).
- S. R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21, 3305 (1980).
- H. Deng, J. Garriga, and A. Vilenkin, Primordial black hole and wormhole formation by domain walls, JCAP 04, 050, arXiv:1612.03753 [gr-qc] .
- H. Deng and A. Vilenkin, Primordial black hole formation by vacuum bubbles, JCAP 12, 044, arXiv:1710.02865 [gr-qc] .
- H. Deng, Primordial black hole formation by vacuum bubbles. Part II, JCAP 09, 023, arXiv:2006.11907 [astro-ph.CO] .
- H. Deng, A possible mass distribution of primordial black holes implied by LIGO-Virgo, JCAP 04, 058, arXiv:2101.11098 [astro-ph.CO] .
- Y.-T. Wang, J. Zhang, and Y.-S. Piao, Primordial gravastar from inflation, Phys. Lett. B 795, 314 (2019), arXiv:1810.04885 [gr-qc] .
- M. Raidal, V. Vaskonen, and H. Veermäe, Gravitational Waves from Primordial Black Hole Mergers, JCAP 09, 037, arXiv:1707.01480 [astro-ph.CO] .
- Y. Ali-Haïmoud, E. D. Kovetz, and M. Kamionkowski, Merger rate of primordial black-hole binaries, Phys. Rev. D 96, 123523 (2017), arXiv:1709.06576 [astro-ph.CO] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24 (2019b), arXiv:1811.12940 [astro-ph.HE] .
- P. Madau and M. Dickinson, Cosmic Star Formation History, Ann. Rev. Astron. Astrophys. 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
- C. Talbot and E. Thrane, Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization, Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
- I. Mandel, W. M. Farr, and J. R. Gair, Extracting distribution parameters from multiple uncertain observations with selection biases, Mon. Not. Roy. Astron. Soc. 486, 1086 (2019), arXiv:1809.02063 [physics.data-an] .
- P. A. R. Ade et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
- J. S. Speagle, dynesty: a dynamic nested sampling package for estimating bayesian posteriors and evidences, Monthly Notices of the Royal Astronomical Society 493, 3132 (2020).
- M. Kleban and C. E. Norton, Monochromatic Mass Spectrum of Primordial Black Holes, (2023), arXiv:2310.09898 [hep-th] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.