Papers
Topics
Authors
Recent
2000 character limit reached

HyperLTL Satisfiability Is Highly Undecidable, HyperCTL$^*$ is Even Harder

Published 29 Mar 2023 in cs.LO | (2303.16699v5)

Abstract: Temporal logics for the specification of information-flow properties are able to express relations between multiple executions of a system. The two most important such logics are HyperLTL and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this expressiveness comes at a price, i.e. satisfiability is undecidable for both logics. In this paper we settle the exact complexity of these problems, showing that both are in fact highly undecidable: we prove that HyperLTL satisfiability is $\Sigma_11$-complete and HyperCTL* satisfiability is $\Sigma_12$-complete. These are significant increases over the previously known lower bounds and the first upper bounds. To prove $\Sigma_12$-membership for HyperCTL*, we prove that every satisfiable HyperCTL* sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We also prove this bound to be tight. Furthermore, we prove that both countable and finitely-branching satisfiability for HyperCTL* are as hard as truth in second-order arithmetic, i.e. still highly undecidable. Finally, we show that the membership problem for every level of the HyperLTL quantifier alternation hierarchy is $\Pi_11$-complete.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.