Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computational approach to the Schottky problem (2303.15249v1)

Published 27 Mar 2023 in math.AG, math-ph, and math.MP

Abstract: We present a computational approach to the classical Schottky problem based on Fay's trisecant identity for genus $g\geq 4$. For a given Riemann matrix $\mathbb{B}\in\mathbb{H}{g}$, the Fay identity establishes linear dependence of secants in the Kummer variety if and only if the Riemann matrix corresponds to a Jacobian variety as shown by Krichever. The theta functions in terms of which these secants are expressed depend on the Abel maps of four arbitrary points on a Riemann surface. However, there is no concept of an Abel map for general $\mathbb{B} \in \mathbb{H}{g}$. To establish linear dependence of the secants, four components of the vectors entering the theta functions can be chosen freely. The remaining components are determined by a Newton iteration to minimize the residual of the Fay identity. Krichever's theorem assures that if this residual vanishes within the finite numerical precision for a generic choice of input data, then the Riemann matrix is with this numerical precision the period matrix of a Riemann surface. The algorithm is compared in genus 4 for some examples to the Schottky-Igusa modular form, known to give the Jacobi locus in this case. It is shown that the same residuals are achieved by the Schottky-Igusa form and the approach based on the Fay identity in this case. In genera 5, 6 and 7, we discuss known examples of Riemann matrices and perturbations thereof for which the Fay identity is not satisfied.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube