Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation
Abstract: In this work, we propose a multi-view image translation framework, which can translate contrast-enhanced T1 (ceT1) MR imaging to high-resolution T2 (hrT2) MR imaging for unsupervised vestibular schwannoma and cochlea segmentation. We adopt two image translation models in parallel that use a pixel-level consistent constraint and a patch-level contrastive constraint, respectively. Thereby, we can augment pseudo-hrT2 images reflecting different perspectives, which eventually lead to a high-performing segmentation model. Our experimental results on the CrossMoDA challenge show that the proposed method achieved enhanced performance on the vestibular schwannoma and cochlea segmentation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.