Beta-VAE has 2 Behaviors: PCA or ICA? (2303.14430v1)
Abstract: Beta-VAE is a very classical model for disentangled representation learning, the use of an expanding bottleneck that allow information into the decoder gradually is key to representation disentanglement as well as high-quality reconstruction. During recent experiments on such fascinating structure, we discovered that the total amount of latent variables can affect the representation learnt by the network: with very few latent variables, the network tend to learn the most important or principal variables, acting like a PCA; with very large numbers of latent variables, the variables tend to be more disentangled, and act like an ICA. Our assumption is that the competition between latent variables while trying to gain the most information bandwidth can lead to this phenomenon.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.