Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p$-$Pb collisions (2303.13349v2)

Published 23 Mar 2023 in nucl-ex and hep-ex

Abstract: Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at $\sqrt{s} = 13$ TeV at midrapidity with the ALICE detector are presented down to a transverse momentum ($p_{\rm T}$) of 0.2 GeV$/c$ and up to $p_{\rm T} = 35$ GeV$/c$, which is the largest momentum range probed for inclusive electron measurements in ALICE. In p$-$Pb collisions, the production cross section and the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the $p_{\rm T}$ range $0.5 < p_{\rm T} < 26$ GeV$/c$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV. The nuclear modification factor is found to be consistent with unity within the statistical and systematic uncertainties. In both collision systems, first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplicity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity. The self-normalised yields in pp and p$-$Pb collisions grow faster than linear with the self-normalised multiplicity. A strong $p_{\rm T}$ dependence is observed in pp collisions, where the yield of high-$p_{\rm T}$ electrons increases faster as a function of multiplicity than the one of low-$p_{\rm T}$ electrons. The measurement in p$-$Pb collisions shows no $p_{\rm T}$ dependence within uncertainties. The self-normalised yields in pp and p$-$Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange particles, and with Monte Carlo simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (176)
  1. B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Finite-mass effects on inclusive B𝐵Bitalic_B meson hadroproduction”, Phys. Rev. D77 (2008) 014011, arXiv:0705.4392 [hep-ph].
  2. M. Cacciari, S. Frixione, M. L. Mangano, P. Nason, and G. Ridolfi, “QCD analysis of first b𝑏bitalic_b cross-section data at 1.96 TeV”, JHEP 07 (2004) 033, arXiv:hep-ph/0312132 [hep-ph].
  3. B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Collinear subtractions in hadroproduction of heavy quarks”, Eur. Phys. J. C41 (2005) 199–212, arXiv:hep-ph/0502194 [hep-ph].
  4. M. Cacciari and P. Nason, “Charm cross-sections for the Tevatron Run II”, JHEP 09 (2003) 006, arXiv:hep-ph/0306212 [hep-ph].
  5. ATLAS Collaboration, G. Aad et al., “Measurement of D*±superscript𝐷absentplus-or-minusD^{*\pm}italic_D start_POSTSUPERSCRIPT * ± end_POSTSUPERSCRIPT, D±superscript𝐷plus-or-minusD^{\pm}italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT and Ds±superscriptsubscript𝐷𝑠plus-or-minusD_{s}^{\pm}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT meson production cross sections in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector”, Nucl. Phys. B 907 (2016) 717–763, arXiv:1512.02913 [hep-ex].
  6. ALICE Collaboration, S. Acharya et al., “Measurement of D0superscriptD0{{\mathrm{D}}^{0}}roman_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , D+superscriptD{{\mathrm{D}}^{+}}roman_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT , D*+superscriptDabsent{{\mathrm{D}}^{*+}}roman_D start_POSTSUPERSCRIPT * + end_POSTSUPERSCRIPT and Ds+subscriptsuperscriptDs{{\mathrm{D}}^{+}_{\mathrm{s}}}roman_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT production in pp collisions at 𝑠=5.02⁢TeV𝑠5.02TeV{\sqrt{{\textit{s}}}~{}=~{}5.02~{}{\text{TeV}}}square-root start_ARG s end_ARG = 5.02 TeV with ALICE”, Eur. Phys. J. C 79 (2019) 388, arXiv:1901.07979 [nucl-ex].
  7. ALICE Collaboration, B. Abelev et al., “Heavy flavour decay muon production at forward rapidity in proton–proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Lett. B 708 (2012) 265–275, arXiv:1201.3791 [hep-ex].
  8. ALICE Collaboration, B. Abelev et al., “Measurement of charm production at central rapidity in proton-proton collisions at s=2.76𝑠2.76\sqrt{s}=2.76square-root start_ARG italic_s end_ARG = 2.76 TeV”, JHEP 07 (2012) 191, arXiv:1205.4007 [hep-ex].
  9. ALICE Collaboration, B. Abelev et al., “Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at \sqrts = 7 TeV”, Phys. Rev. D 86 (2012) 112007, arXiv:1205.5423 [hep-ex].
  10. LHCb Collaboration, R. Aaij et al., “Measurements of prompt charm production cross-sections in pp collisions at s=5𝑠5\sqrt{s}=5square-root start_ARG italic_s end_ARG = 5 TeV”, JHEP 06 (2017) 147, arXiv:1610.02230 [hep-ex].
  11. CMS Collaboration, A. M. Sirunyan et al., “Nuclear modification factor of D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT mesons in PbPb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 782 (2018) 474–496, arXiv:1708.04962 [nucl-ex].
  12. LHCb Collaboration, R. Aaij et al., “Measurements of prompt charm production cross-sections in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 03 (2016) 159, arXiv:1510.01707 [hep-ex]. [Erratum: JHEP 09, 013 (2016), Erratum: JHEP 05, 074 (2017)].
  13. ALICE Collaboration, S. Acharya et al., “Observation of a multiplicity dependence in the pTsubscript𝑝Tp_{\rm T}italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT-differential charm baryon-to-meson ratios in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 829 (2022) 137065, arXiv:2111.11948 [nucl-ex].
  14. ALICE Collaboration, B. Abelev et al., “Measurement of electrons from beauty hadron decays in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Lett. B 721 (2013) 13–23, arXiv:1208.1902 [hep-ex]. [Erratum: Phys.Lett.B 763, 507–509 (2016)].
  15. ALICE Collaboration, S. Acharya et al., “Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 804 (2020) 135377, arXiv:1910.09110 [nucl-ex].
  16. ATLAS Collaboration, G. Aad et al., “Measurement of the nuclear modification factor for muons from charm and bottom hadrons in Pb+Pb collisions at 5.02 TeV with the ATLAS detector”, Phys. Lett. B 829 (2022) 137077, arXiv:2109.00411 [nucl-ex].
  17. ALICE Collaboration, B. Abelev et al., “Measurement of prompt J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ and beauty hadron production cross sections at mid-rapidity in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 11 (2012) 065, arXiv:1205.5880 [hep-ex].
  18. ALICE Collaboration, J. Adam et al., “Measurement of electrons from beauty-hadron decays in p–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV and Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 07 (2017) 052, arXiv:1609.03898 [nucl-ex].
  19. ATLAS Collaboration, G. Aad et al., “Measurement of the differential cross-section of B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT meson production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV at ATLAS”, JHEP 10 (2013) 042, arXiv:1307.0126 [hep-ex].
  20. CMS Collaboration, V. Khachatryan et al., “Prompt and Non-Prompt J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ Production in pp Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, Eur. Phys. J. C71 (2011) 1575, arXiv:1011.4193 [hep-ex].
  21. LHCb Collaboration, R. Aaij et al., “Measurement of σ⁢(p⁢p→b⁢b¯⁢X)𝜎→𝑝𝑝𝑏¯𝑏𝑋\sigma(pp\to b\bar{b}X)italic_σ ( italic_p italic_p → italic_b over¯ start_ARG italic_b end_ARG italic_X ) at s=7⁢TeV𝑠7TeV\sqrt{s}=7~{}\rm{TeV}square-root start_ARG italic_s end_ARG = 7 roman_TeV in the forward region”, Phys. Lett. B694 (2010) 209–216, arXiv:1009.2731 [hep-ex].
  22. ALICE Collaboration, S. Acharya et al., “Measurement of beauty and charm production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV via non-prompt and prompt D mesons”, JHEP 05 (2021) 220, arXiv:2102.13601 [nucl-ex].
  23. ALICE Collaboration, S. Acharya et al., “Dielectron production in proton-proton and proton-lead collisions at sN⁢N=subscript𝑠𝑁𝑁absent\sqrt{s_{NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 102 (2020) 055204, arXiv:2005.11995 [nucl-ex].
  24. CMS Collaboration, V. Khachatryan et al., “Measurement of the total and differential inclusive B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT hadron cross sections in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 771 (2017) 435–456, arXiv:1609.00873 [hep-ex].
  25. LHCb Collaboration, R. Aaij et al., “Measurement of the b𝑏bitalic_b-quark production cross-section in 7 and 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions”, Phys. Rev. Lett. 118 (2017) 052002, arXiv:1612.05140 [hep-ex]. [Erratum: Phys.Rev.Lett. 119, 169901 (2017)].
  26. LHCb Collaboration, R. Aaij et al., “Measurement of forward J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ production cross-sections in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 10 (2015) 172, arXiv:1509.00771 [hep-ex]. [Erratum: JHEP 05, 063 (2017)].
  27. ALICE Collaboration, B. Abelev et al., “Measurement of electrons from beauty hadron decays in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Lett. B 721 (2013) 13–23, arXiv:1208.1902 [hep-ex]. [Erratum: Phys.Lett.B 763, 507–509 (2016)].
  28. B. A. Kniehl, “Inclusive production of heavy-flavored hadrons at NLO in the GM-VFNS”, in Proceedings, 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008): London, UK, April 7-11, 2008, p. 195. 2008. arXiv:0807.2215 [hep-ph].
  29. B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Inclusive B-Meson Production at the LHC in the GM-VFN Scheme”, Phys. Rev. D84 (2011) 094026, arXiv:1109.2472 [hep-ph].
  30. B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Reconciling open charm production at the Fermilab Tevatron with QCD”, Phys. Rev. Lett. 96 (2006) 012001, arXiv:hep-ph/0508129 [hep-ph].
  31. P. Bolzoni and G. Kramer, “Inclusive lepton production from heavy-hadron decay in pp collisions at the LHC”, Nucl. Phys. B 872 (2013) 253–264, arXiv:1212.4356 [hep-ph]. [Erratum: Nucl.Phys.B 876, 334–337 (2013)].
  32. P. Bolzoni and G. Kramer, “Inclusive charmed-meson production from bottom hadron decays at the lhc”, J. Phys. G: Nucl. Part. Phys. 41 (May, 2014) 075006.
  33. M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason, and G. Ridolfi, “Theoretical predictions for charm and bottom production at the LHC”, JHEP 10 (2012) 137, arXiv:1205.6344 [hep-ph].
  34. ALICE Collaboration, S. Acharya et al., “Λc+superscriptsubscriptΛc\Lambda_{\rm c}^{+}roman_Λ start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT production in pp collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV and in p–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 04 (2018) 108, arXiv:1712.09581 [nucl-ex].
  35. ALICE Collaboration, S. Acharya et al., “Λc+subscriptsuperscriptΛ𝑐\Lambda^{+}_{c}roman_Λ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT Production and Baryon-to-Meson Ratios in pp and p–Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02  TeV at the LHC”, Phys. Rev. Lett. 127 (2021) 202301, arXiv:2011.06078 [nucl-ex].
  36. ALICE Collaboration, S. Acharya et al., “Λc+subscriptsuperscriptΛ𝑐\Lambda^{+}_{c}roman_Λ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT production in pp and in p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 104 (2021) 054905, arXiv:2011.06079 [nucl-ex].
  37. CMS Collaboration, A. M. Sirunyan et al., “Production of Λc+superscriptsubscriptΛc\Lambda_{\mathrm{c}}^{+}roman_Λ start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT baryons in proton-proton and lead-lead collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 803 (2020) 135328, arXiv:1906.03322 [hep-ex].
  38. ALICE Collaboration, S. Acharya et al., “First measurement of Ξc0superscriptsubscriptΞc0\Xi_{\rm c}^{0}roman_Ξ start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production in pp collisions at 𝐬𝐬\mathbf{\sqrt{s}}square-root start_ARG bold_s end_ARG = 7 TeV”, Phys. Lett. B 781 (2018) 8–19, arXiv:1712.04242 [hep-ex].
  39. ALICE Collaboration, S. Acharya et al., “Measurement of the production cross section of prompt Ξc0superscriptsubscriptΞc0{\Xi}_{\mathrm{c}}^{0}roman_Ξ start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT baryons at midrapidity in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02 TeV”, JHEP 10 (2021) 159, arXiv:2105.05616 [nucl-ex].
  40. ALICE Collaboration, S. Acharya et al., “Measurement of the cross cections of Ξc0subscriptsuperscriptΞ0𝑐\Xi^{0}_{c}roman_Ξ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and Ξc+subscriptsuperscriptΞ𝑐\Xi^{+}_{c}roman_Ξ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT baryons and of the branching-fraction ratio BR(Ξc0→Ξ−⁢e+⁢νe→subscriptsuperscriptΞ0𝑐superscriptΞsuperscript𝑒subscript𝜈𝑒\Xi^{0}_{c}\rightarrow\Xi^{-}{e}^{+}\nu_{e}roman_Ξ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → roman_Ξ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT)/BR(Ξc0→Ξ−⁢π+→subscriptsuperscriptΞ0𝑐superscriptΞsuperscript𝜋\Xi^{0}_{c}\rightarrow\Xi^{-}\pi^{+}roman_Ξ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → roman_Ξ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT) in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 127 (2021) 272001, arXiv:2105.05187 [nucl-ex].
  41. ALICE Collaboration, S. Acharya et al., “Measurement of Prompt D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT, Λc+superscriptsubscriptΛ𝑐\Lambda_{c}^{+}roman_Λ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, and Σc0,++superscriptsubscriptΣ𝑐0absent\Sigma_{c}^{0,++}roman_Σ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 , + + end_POSTSUPERSCRIPT(2455) Production in Proton–Proton Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13  TeV”, Phys. Rev. Lett. 128 (2022) 012001, arXiv:2106.08278 [hep-ex].
  42. ALICE Collaboration, “First measurement of Ωc0superscriptsubscriptΩc0\rm\Omega_{c}^{0}roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 846 (2023) 137625, arXiv:2205.13993 [nucl-ex].
  43. L. Gladilin, “Fragmentation fractions of c𝑐citalic_c and b𝑏bitalic_b quarks into charmed hadrons at LEP”, Eur. Phys. J. C 75 (2015) 19, arXiv:1404.3888 [hep-ex].
  44. CDF Collaboration, T. Aaltonen et al., “Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 1.96-TeV”, Phys. Rev. D 77 (2008) 072003, arXiv:0801.4375 [hep-ex].
  45. LHCb Collaboration, R. Aaij et al., “Measurement of b𝑏bitalic_b-hadron production fractions in 7⁢TeV7TeV7~{}\rm{TeV}7 roman_TeV pp collisions”, Phys. Rev. D 85 (2012) 032008, arXiv:1111.2357 [hep-ex].
  46. LHCb Collaboration, R. Aaij et al., “Measurement of b𝑏bitalic_b hadron fractions in 13 TeV pp collisions”, Phys. Rev. D 100 (2019) 031102, arXiv:1902.06794 [hep-ex].
  47. K. J. Eskola, H. Paukkunen, and C. A. Salgado, “EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions”, JHEP 04 (2009) 065, arXiv:0902.4154 [hep-ph].
  48. D. de Florian and R. Sassot, “Nuclear parton distributions at next-to-leading order”, Phys. Rev. D69 (2004) 074028, arXiv:hep-ph/0311227 [hep-ph].
  49. M. Hirai, S. Kumano, and T. H. Nagai, “Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order”, Phys. Rev. C76 (2007) 065207, arXiv:0709.3038 [hep-ph].
  50. K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, “EPPS16: Nuclear parton distributions with LHC data”, Eur. Phys. J. C 77 (2017) 163, arXiv:1612.05741 [hep-ph].
  51. H. Fujii and K. Watanabe, “Heavy quark pair production in high energy pA collisions: Open heavy flavors”, Nucl. Phys. A920 (2013) 78–93, arXiv:1308.1258 [hep-ph].
  52. P. Tribedy and R. Venugopalan, “QCD saturation at the LHC: Comparisons of models to p + p and A + A data and predictions for p + Pb collisions”, Phys. Lett. B 710 (2012) 125–133, arXiv:1112.2445 [hep-ph]. [Erratum: Phys.Lett.B 718, 1154–1154 (2013)].
  53. J. L. Albacete, A. Dumitru, H. Fujii, and Y. Nara, “CGC predictions for p + Pb collisions at the LHC”, Nucl. Phys. A897 (2013) 1–27, arXiv:1209.2001 [hep-ph].
  54. A. H. Rezaeian, “CGC predictions for p+A collisions at the LHC and signature of QCD saturation”, Phys. Lett. B718 (2013) 1058–1069, arXiv:1210.2385 [hep-ph].
  55. M. Lev and B. Petersson, “Nuclear Effects at Large Transverse Momentum in a QCD Parton Model”, Z. Phys. C21 (1983) 155.
  56. B. Z. Kopeliovich, J. Nemchik, A. Schafer, and A. V. Tarasov, “Cronin effect in hadron production off nuclei”, Phys. Rev. Lett. 88 (2002) 232303, arXiv:hep-ph/0201010 [hep-ph].
  57. I. Vitev, “Non-Abelian energy loss in cold nuclear matter”, Phys. Rev. C75 (2007) 064906, arXiv:hep-ph/0703002 [hep-ph].
  58. ALICE Collaboration, J. Adam et al., “Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\rm NN}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B754 (2016) 81–93, arXiv:1509.07491 [nucl-ex].
  59. ALICE Collaboration, S. Acharya et al., “Measurement of prompt D00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT, D+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT, D*+absent{}^{*+}start_FLOATSUPERSCRIPT * + end_FLOATSUPERSCRIPT, and DS+superscriptsubscriptDS{\mathrm{D}}_{\mathrm{S}}^{+}roman_D start_POSTSUBSCRIPT roman_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT production in p–Pb collisions at sNNsubscriptsNN\sqrt{{\mathrm{s}}_{\mathrm{NN}}}square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 12 (2019) 092, arXiv:1906.03425 [nucl-ex].
  60. ALICE Collaboration, “Inclusive, prompt and non-prompt J/ψ𝜓\psiitalic_ψ production at midrapidity in p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 06 (2022) 011, arXiv:2105.04957 [nucl-ex].
  61. ALICE Collaboration, “J/ψ𝜓\psiitalic_ψ production at midrapidity in p−--Pb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\rm NN}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, JHEP 07 (2023) 137, arXiv:2211.14153 [nucl-ex].
  62. ALICE Collaboration, S. Acharya et al., “Inclusive J/ψ𝜓\psiitalic_ψ production at forward and backward rapidity in p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, JHEP 07 (2018) 160, arXiv:1805.04381 [nucl-ex].
  63. ALICE Collaboration, B. B. Abelev et al., “Measurement of prompt D-meson production in p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 113 (2014) 232301, arXiv:1405.3452 [nucl-ex].
  64. ALICE Collaboration, “First measurement of Λc+superscriptsubscriptΛc\Lambda_{\mathrm{c}}^{+}roman_Λ start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT production down to pT=0subscript𝑝T0p_{\mathrm{T}}=0italic_p start_POSTSUBSCRIPT roman_T end_POSTSUBSCRIPT = 0 in pp and p-Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. C 107 (2023) 064901, arXiv:2211.14032 [nucl-ex].
  65. ATLAS Collaboration, M. Aaboud et al., “Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02⁢TeV5.02TeV5.02~{}\mathrm{TeV}5.02 roman_TeV with the ATLAS detector”, Eur. Phys. J. C 78 (2018) 171, arXiv:1709.03089 [nucl-ex].
  66. CMS Collaboration, A. M. Sirunyan et al., “Measurement of prompt and nonprompt J/ψJ𝜓\mathrm{J}/{\psi}roman_J / italic_ψ production in pppp\mathrm{p}\mathrm{p}roman_pp and pPbpPb\mathrm{p}\mathrm{Pb}roman_pPb collisions at sNN=5.02⁢TeVsubscript𝑠NN5.02TeV\sqrt{s_{\mathrm{NN}}}=5.02\,\text{TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Eur. Phys. J. C 77 (2017) 269, arXiv:1702.01462 [nucl-ex].
  67. CMS Collaboration, V. Khachatryan et al., “Study of B Meson Production in p+++Pb Collisions at sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV Using Exclusive Hadronic Decays”, Phys. Rev. Lett. 116 (2016) 032301, arXiv:1508.06678 [nucl-ex].
  68. LHCb Collaboration, R. Aaij et al., “Study of J/ψ𝐽𝜓J/\psiitalic_J / italic_ψ production and cold nuclear matter effects in p⁢P⁢b𝑝𝑃𝑏pPbitalic_p italic_P italic_b collisions at sN⁢N=5subscript𝑠𝑁𝑁5\sqrt{s_{NN}}=5square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5 TeV”, JHEP 02 (2014) 072, arXiv:1308.6729 [nucl-ex].
  69. LHCb Collaboration, R. Aaij et al., “Prompt and nonprompt J/ψ𝜓\psiitalic_ψ production and nuclear modification in p𝑝pitalic_pPb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\text{NN}}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Phys. Lett. B 774 (2017) 159–178, arXiv:1706.07122 [hep-ex].
  70. LHCb Collaboration, R. Aaij et al., “Measurement of B+superscript𝐵B^{+}italic_B start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, B0superscript𝐵0B^{0}italic_B start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and Λb0superscriptsubscriptΛ𝑏0\Lambda_{b}^{0}roman_Λ start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT production in p⁢Pb𝑝Pbp\mkern 1.0mu\mathrm{Pb}italic_p roman_Pb collisions at sNN=8.16⁢TeVsubscript𝑠NN8.16TeV\sqrt{s_{\mathrm{NN}}}=8.16\,{\rm TeV}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 roman_TeV”, Phys. Rev. D 99 (2019) 052011, arXiv:1902.05599 [hep-ex].
  71. LHCb Collaboration, “Measurement of the prompt D0superscript𝐷0D^{0}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT nuclear modification factor in p𝑝pitalic_pPb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\mathrm{NN}}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Phys. Rev. Lett. 131 (2023) 102301, arXiv:2205.03936 [nucl-ex].
  72. CMS Collaboration, V. Khachatryan et al., “Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC”, JHEP 09 (2010) 091, arXiv:1009.4122 [hep-ex].
  73. ATLAS Collaboration, G. Aad et al., “Observation of Long-Range Elliptic Azimuthal Anisotropies in s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 and 2.76 TeV p⁢p𝑝𝑝ppitalic_p italic_p Collisions with the ATLAS Detector”, Phys. Rev. Lett. 116 (2016) 172301, arXiv:1509.04776 [hep-ex].
  74. CMS Collaboration, V. Khachatryan et al., “Measurement of long-range near-side two-particle angular correlations in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV”, Phys. Rev. Lett. 116 (2016) 172302, arXiv:1510.03068 [nucl-ex].
  75. ALICE Collaboration, B. Abelev et al., “Long-range angular correlations on the near and away side in p–Pb collisions at sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B719 (2013) 29–41, arXiv:1212.2001 [nucl-ex].
  76. ATLAS Collaboration, M. Aaboud et al., “Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at s=5.02𝑠5.02\sqrt{s}=5.02square-root start_ARG italic_s end_ARG = 5.02 and 13131313 TeV and p𝑝pitalic_p+Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\mathrm{NN}}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV with the ATLAS detector”, Phys. Rev. C96 (2017) 024908, arXiv:1609.06213 [nucl-ex].
  77. CMS Collaboration, S. Chatrchyan et al., “Multiplicity and Transverse Momentum Dependence of Two- and Four-Particle Correlations in pPb and PbPb Collisions”, Phys. Lett. B724 (2013) 213–240, arXiv:1305.0609 [nucl-ex].
  78. ALICE Collaboration, B. B. Abelev et al., “Long-range angular correlations of π𝜋\rm\piitalic_π, K and p in p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B726 (2013) 164–177, arXiv:1307.3237 [nucl-ex].
  79. CMS Collaboration, V. Khachatryan et al., “Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies”, Phys. Lett. B742 (2015) 200–224, arXiv:1409.3392 [nucl-ex].
  80. PHENIX Collaboration, A. Adare et al., “Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d𝑑ditalic_d+++Au Collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{{}_{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG=200 GeV”, Phys. Rev. Lett. 111 (2013) 212301, arXiv:1303.1794 [nucl-ex].
  81. STAR Collaboration, L. Adamczyk et al., “Long-range pseudorapidity dihadron correlations in d𝑑ditalic_d+Au collisions at sNN=200subscript𝑠NN200\sqrt{s_{\rm NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Lett. B747 (2015) 265–271, arXiv:1502.07652 [nucl-ex].
  82. PHENIX Collaboration, A. Adare et al., “Measurements of elliptic and triangular flow in high-multiplicity 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe+++Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{{}_{NN}}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT italic_N italic_N end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. Lett. 115 (2015) 142301, arXiv:1507.06273 [nucl-ex].
  83. CMS Collaboration, S. Chatrchyan et al., “Observation of Long-Range Near-Side Angular Correlations in Proton-Lead Collisions at the LHC”, Phys. Lett. B 718 (2013) 795–814, arXiv:1210.5482 [nucl-ex].
  84. ALICE Collaboration, B. Abelev et al., “Long-range angular correlations on the near and away side in p𝑝pitalic_p-Pb collisions at sN⁢N=5.02subscript𝑠𝑁𝑁5.02\sqrt{s_{NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 719 (2013) 29–41, arXiv:1212.2001 [nucl-ex].
  85. ATLAS Collaboration, G. Aad et al., “Observation of Associated Near-Side and Away-Side Long-Range Correlations in sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=5.02 TeV Proton-Lead Collisions with the ATLAS Detector”, Phys. Rev. Lett. 110 (2013) 182302, arXiv:1212.5198 [hep-ex].
  86. LHCb Collaboration, R. Aaij et al., “Measurements of long-range near-side angular correlations in sNN=5subscript𝑠NN5\sqrt{s_{\text{NN}}}=5square-root start_ARG italic_s start_POSTSUBSCRIPT NN end_POSTSUBSCRIPT end_ARG = 5TeV proton-lead collisions in the forward region”, Phys. Lett. B 762 (2016) 473–483, arXiv:1512.00439 [nucl-ex].
  87. ALICE Collaboration, S. Acharya et al., “Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p–Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 122 (2019) 072301, arXiv:1805.04367 [nucl-ex].
  88. CMS Collaboration, A. M. Sirunyan et al., “Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{{}_{\mathrm{NN}}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT start_FLOATSUBSCRIPT roman_NN end_FLOATSUBSCRIPT end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Phys. Rev. Lett. 121 (2018) 082301, arXiv:1804.09767 [hep-ex].
  89. CMS Collaboration, A. M. Sirunyan et al., “Observation of prompt J/ψ𝜓\psiitalic_ψ meson elliptic flow in high-multiplicity pPb collisions at sNN=subscript𝑠NNabsent\sqrt{s_{\mathrm{NN}}}=square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Phys. Lett. B 791 (2019) 172–194, arXiv:1810.01473 [hep-ex].
  90. ALICE Collaboration, S. Acharya et al., “Search for collectivity with azimuthal J/ψ𝜓\psiitalic_ψ-hadron correlations in high multiplicity p-Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 and 8.16 TeV”, Phys. Lett. B 780 (2018) 7–20, arXiv:1709.06807 [nucl-ex].
  91. CMS Collaboration, A. M. Sirunyan et al., “Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies”, Phys. Lett. B 813 (2021) 136036, arXiv:2009.07065 [hep-ex].
  92. ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
  93. K. Werner, I. Karpenko, and T. Pierog, “The ’Ridge’ in Proton-Proton Scattering at 7 TeV”, Phys. Rev. Lett. 106 (2011) 122004, arXiv:1011.0375 [hep-ph].
  94. W.-T. Deng, Z. Xu, and C. Greiner, “Elliptic and Triangular Flow and their Correlation in Ultrarelativistic High Multiplicity Proton Proton Collisions at 14 TeV”, Phys. Lett. B711 (2012) 301–306, arXiv:1112.0470 [hep-ph].
  95. K. Werner, M. Bleicher, B. Guiot, I. Karpenko, and T. Pierog, “Evidence for Flow from Hydrodynamic Simulations of p–Pb Collisions at 5.02 TeV from ν2subscript𝜈2\nu_{2}italic_ν start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Mass Splitting”, Phys. Rev. Lett. 112 (2014) 232301, arXiv:1307.4379 [nucl-th].
  96. B. Schenke, C. Shen, and P. Tribedy, “Hybrid Color Glass Condensate and hydrodynamic description of the Relativistic Heavy Ion Collider small system scan”, Phys. Lett. B 803 (2020) 135322, arXiv:1908.06212 [nucl-th].
  97. C. Bierlich, G. Gustafson, L. Lönnblad, and A. Tarasov, “Effects of Overlapping Strings in pp Collisions”, JHEP 03 (2015) 148, arXiv:1412.6259 [hep-ph].
  98. I. Bautista, A. F. Téllez, and P. Ghosh, “Indication of change of phase in high-multiplicity proton-proton events at LHC in String Percolation Model”, Phys. Rev. D92 (2015) 071504, arXiv:1509.02278 [nucl-th].
  99. T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].
  100. A. Ortiz Velasquez, P. Christiansen, E. Cuautle Flores, I. Maldonado Cervantes, and G. Paić, “Color Reconnection and Flowlike Patterns in pp Collisions”, Phys. Rev. Lett. 111 (2013) 042001, arXiv:1303.6326 [hep-ph].
  101. J. D. Orjuela Koop, A. Adare, D. McGlinchey, and J. L. Nagle, “Azimuthal anisotropy relative to the participant plane from a multiphase transport model in central p + Au , d + Au , and 33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTHe + Au collisions at sNN=200subscript𝑠NN200\sqrt{s_{\rm NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C92 (2015) 054903, arXiv:1501.06880 [nucl-ex].
  102. S. Schlichting and P. Tribedy, “Collectivity in Small Collision Systems: An Initial-State Perspective”, Adv. High Energy Phys. 2016 (2016) 8460349, arXiv:1611.00329 [hep-ph].
  103. B. Schenke, S. Schlichting, P. Tribedy, and R. Venugopalan, “Mass ordering of spectra from fragmentation of saturated gluon states in high multiplicity proton-proton collisions”, Phys. Rev. Lett. 117 (2016) 162301, arXiv:1607.02496 [hep-ph].
  104. ALICE Collaboration, J. Adam et al., “Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 09 (2015) 148, arXiv:1505.00664 [nucl-ex].
  105. ALICE Collaboration, S. Acharya et al., “Multiplicity dependence of J/ψ𝜓\psiitalic_ψ production at midrapidity in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 810 (2020) 135758, arXiv:2005.11123 [nucl-ex].
  106. STAR Collaboration, J. Adam et al., “J/ψ𝜓\psiitalic_ψ production cross section and its dependence on charged-particle multiplicity in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 200 GeV”, Phys. Lett. B786 (2018) 87–93, arXiv:1805.03745 [hep-ex].
  107. CMS Collaboration, S. Chatrchyan et al., “Event Activity Dependence of Y(nS) Production in sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG=5.02 TeV pPb and s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG=2.76 TeV pp Collisions”, JHEP 04 (2014) 103, arXiv:1312.6300 [nucl-ex].
  108. ALICE Collaboration, S. Acharya et al., “J/ψ𝜓\psiitalic_ψ production as a function of charged-particle multiplicity in p–Pb collisions at 𝑠NN=8.16subscript𝑠NN8.16\sqrt{\textit{s}_{\rm NN}}~{}=~{}8.16square-root start_ARG s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, JHEP 09 (2020) 162, arXiv:2004.12673 [nucl-ex].
  109. ALICE Collaboration, J. Adam et al., “Measurement of D-meson production versus multiplicity in p–Pb collisions at sNN=5.02subscriptsNN5.02\sqrt{{\mathrm{s}}_{\mathrm{NN}}}=5.02square-root start_ARG roman_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 08 (2016) 078, arXiv:1602.07240 [nucl-ex].
  110. CMS Collaboration, A. M. Sirunyan et al., “Investigation into the event-activity dependence of ΥΥ\Upsilonroman_Υ(nS) relative production in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 11 (2020) 001, arXiv:2007.04277 [hep-ex].
  111. ALICE Collaboration, “Multiplicity dependence of ΥΥ\Upsilonroman_Υ production at forward rapidity in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, arXiv:2209.04241 [nucl-ex].
  112. ALICE Collaboration, S. Acharya et al., “Charged-particle production as a function of multiplicity and transverse spherocity in pp collisions at s=5.02𝑠5.02\sqrt{s}=5.02square-root start_ARG italic_s end_ARG = 5.02 and 13 TeV”, Eur. Phys. J. C79 (2019) 857, arXiv:1905.07208 [nucl-ex].
  113. ALICE Collaboration, S. Acharya et al., “Multiplicity dependence of light-flavor hadron production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Rev. C99 (2019) 024906, arXiv:1807.11321 [nucl-ex].
  114. T. Sjostrand et al., “PYTHIA 6.4 Physics and Manual”, JHEP 05 (2006) 026, arXiv:hep-ph/0603175 [hep-ph].
  115. K. Werner, B. Guiot, I. Karpenko, and T. Pierog, “Analysing radial flow features in p–Pb and pp collisions at several TeV by studying identified particle production in EPOS3”, Phys. Rev. C 89 (2014) 064903, arXiv:1312.1233 [nucl-th].
  116. T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, and K. Werner, “EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider”, Phys. Rev. C 92 (2015) 034906, arXiv:1306.0121 [hep-ph].
  117. LHCb Collaboration, “Evidence for modification of b𝑏bitalic_b quark hadronization in high-multiplicity p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, arXiv:2204.13042 [hep-ex].
  118. ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
  119. ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
  120. ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the inner tracking system (ITS)”, CERN-LHCC-99-12.
  121. ALICE Collaboration, G. Dellacasa et al., “ALICE: Technical design report of the time projection chamber”, CERN-OPEN-2000-183, CERN-LHCC-2000-001.
  122. ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the time-of-flight system (TOF)”, CERN-LHCC-2000-012.
  123. ALICE Collaboration, P. Cortese et al., “ALICE: Addendum to the technical design report of the time of flight system (TOF)”, CERN-LHCC-2002-016.
  124. ALICE Collaboration, P. Cortese et al., “ALICE electromagnetic calorimeter technical design report”, CERN-LHCC-2008-014, CERN-ALICE-TDR-014.
  125. J. Allen et al., “ALICE DCal: An Addendum to the EMCal Technical Design Report Di-Jet and Hadron-Jet correlation measurements in ALICE”, CERN-LHCC-2010-011, ALICE-TDR-14-add-1.
  126. E. Cerron Zeballos, I. Crotty, D. Hatzifotiadou, J. Lamas Valverde, S. Neupane, M. C. S. Williams, and A. Zichichi, “A New type of resistive plate chamber: The Multigap RPC”, Nucl. Instrum. Meth. A 374 (1996) 132–136.
  127. ALICE Collaboration, P. Cortese et al., “ALICE technical design report on forward detectors: FMD, T0 and V0”, CERN-LHCC-2004-025.
  128. ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the zero degree calorimeter (ZDC)”, CERN-LHCC-99-05.
  129. ALICE Collaboration, “Performance of the ALICE Electromagnetic Calorimeter”, JINST 18 (2023) P08007, arXiv:2209.04216 [physics.ins-det].
  130. ALICE Collaboration, “ALICE luminosity determination for pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, ALICE-PUBLIC-2016-002. https://cds.cern.ch/record/2160174.
  131. ALICE Collaboration, “ALICE luminosity determination for p–Pb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\rm NN}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, ALICE-PUBLIC-2018-002. https://cds.cern.ch/record/2314660.
  132. ALICE Collaboration, B. Abelev et al., “Pseudorapidity density of charged particles in p–Pb collisions at sNN=5.02subscript𝑠NN5.02\sqrt{s_{\rm NN}}=5.02square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 110 (2013) 032301, arXiv:1210.3615 [nucl-ex].
  133. ALICE Collaboration, S. Acharya et al., “Charged-particle pseudorapidity density at mid-rapidity in p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Eur. Phys. J. C79 (2019) 307, arXiv:1812.01312 [nucl-ex].
  134. ALICE Collaboration, B. Abelev et al., “J/ψ𝜓\psiitalic_ψ Production as a Function of Charged Particle Multiplicity in pp Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, Phys. Lett. B712 (2012) 165–175, arXiv:1202.2816 [hep-ex].
  135. ALICE Collaboration, J. Adam et al., “Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B753 (2016) 319–329, arXiv:1509.08734 [nucl-ex].
  136. S. Roesler, R. Engel, and J. Ranft, “The Monte Carlo event generator DPMJET-III”, in International Conference on Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (MC 2000), pp. 1033–1038. 12, 2000. arXiv:hep-ph/0012252.
  137. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, “GEANT Detector Description and Simulation Tool”, CERN-W5013, CERN-W-5013, W5013, W-5013.
  138. ALICE Collaboration, S. Acharya et al., “Pseudorapidity distributions of charged particles as a function of mid- and forward rapidity multiplicities in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 5.02, 7 and 13 TeV”, The European Physical Journal C 81 (Jul, 2021) , arXiv:2009.09434 [nucl-ex].
  139. ALICE Collaboration, S. Acharya et al., “Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 02 (2020) 077, arXiv:1910.14399 [nucl-ex].
  140. ALICE Collaboration, S. Acharya et al., “Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B804 (2020) 135377, arXiv:1910.09110 [nucl-ex].
  141. H. Bethe, “Theory of the Passage of Fast Corpuscular Rays Through Matter”, Annalen Phys. 5 (1930) 325–400. [Annalen Phys.397,325(1930)].
  142. ALICE Collaboration, C. W. Fabjan et al., “ALICE: Physics performance report, volume II”, J. Phys. G32 (2006) 1295–2040.
  143. T. C. Awes, F. E. Obenshain, F. Plasil, S. Saini, S. P. Sorensen, and G. R. Young, “A Simple method of shower localization and identification in laterally segmented calorimeters”, Nucl. Instrum. Meth. A311 (1992) 130–138.
  144. ALICE Collaboration, S. Acharya et al., “Production of π0superscript𝜋0{\pi^{0}}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and η𝜂\etaitalic_η mesons up to high transverse momentum in pp collisions at 2.76 TeV”, Eur. Phys. J. C77 (2017) 339, arXiv:1702.00917 [hep-ex]. [Eur. Phys. J.C77,no.9,586(2017)].
  145. X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions”, Phys. Rev. D44 (1991) 3501–3516.
  146. ALICE Collaboration, S. Acharya et al., “Production of light-flavor hadrons in pp collisions at s=7⁢ and ⁢s=13⁢ TeV𝑠7 and 𝑠13 TeV\sqrt{s}~{}=~{}7\text{ and }\sqrt{s}=13\,\text{ TeV}square-root start_ARG italic_s end_ARG = 7 and square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 81 (2021) 256, arXiv:2005.11120 [nucl-ex].
  147. G. Gatoff and C. Y. Wong, “Origin of the soft p(T) spectra”, Phys. Rev. D 46 (1992) 997–1006.
  148. P. K. Khandai, P. Shukla, and V. Singh, “Meson spectra and mTsubscript𝑚𝑇m_{T}italic_m start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT scaling in p+p𝑝𝑝p+pitalic_p + italic_p, d+limit-from𝑑d+italic_d +Au, and Au + Au collisions at sN⁢N=200subscript𝑠𝑁𝑁200\sqrt{s_{NN}}=200square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 200 GeV”, Phys. Rev. C 84 (2011) 054904, arXiv:1110.3929 [hep-ph].
  149. L. Altenkämper, F. Bock, C. Loizides, and N. Schmidt, “Applicability of transverse mass scaling in hadronic collisions at energies available at the CERN Large Hadron Collider”, Phys. Rev. C 96 (2017) 064907, arXiv:1710.01933 [hep-ph].
  150. ALICE Collaboration, S. Acharya et al., “Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p–Pb collisions at sNN=8.16subscript𝑠NN8.16\sqrt{s_{\mathrm{NN}}}=8.16square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 8.16 TeV”, Phys. Lett. B 827 (2022) 136943, arXiv:2104.03116 [nucl-ex].
  151. ALICE Collaboration, S. Acharya et al., “Measurements of low-pT𝑇{}_{T}start_FLOATSUBSCRIPT italic_T end_FLOATSUBSCRIPT electrons from semileptonic heavy-flavour hadron decays at mid-rapidity in pp and Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, JHEP 10 (2018) 061, arXiv:1805.04379 [nucl-ex].
  152. ALICE Collaboration, B. B. Abelev et al., “Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s=2.76𝑠2.76\sqrt{s}=2.76square-root start_ARG italic_s end_ARG = 2.76 TeV”, Phys. Rev. D91 (2015) 012001, arXiv:1405.4117 [nucl-ex].
  153. ALICE Collaboration, S. Acharya et al., “Inclusive heavy-flavour production at central and forward rapidity in Xe-Xe collisions at sN⁢Nsubscript𝑠𝑁𝑁\sqrt{s_{NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT italic_N italic_N end_POSTSUBSCRIPT end_ARG = 5.44 TeV”, Phys. Lett. B 819 (2021) 136437, arXiv:2011.06970 [nucl-ex].
  154. C. Oleari, “The POWHEG-BOX”, Nucl. Phys. Proc. Suppl. 205-206 (2010) 36–41, arXiv:1007.3893 [hep-ph].
  155. E. Fermi, “An attempt of a theory of beta radiation. 1.”, Z. Phys. 88 (1934) 161–177.
  156. F. L. Wilson, “Fermi’s Theory of Beta Decay”, Am. J. Phys. 36 (1968) 1150–1160.
  157. ALICE Collaboration, “ALICE 2016-2017-2018 luminosity determination for pp collisions at 𝑠𝑠\mathbf{\sqrt{{\textit{s}}}}square-root start_ARG s end_ARG = 13 TeV”, ALICE-PUBLIC-2021-005. http://cds.cern.ch/record/2776672.
  158. ALICE Collaboration, S. Acharya et al., “Measurement of D-meson production at mid-rapidity in pp collisions at s=7𝑠7{\sqrt{s}=7}square-root start_ARG italic_s end_ARG = 7 TeV”, Eur. Phys. J. C 77 (2017) 550, arXiv:1702.00766 [hep-ex].
  159. ALICE Collaboration, “The ALICE definition of primary particles”, ALICE-PUBLIC-2017-005. https://cds.cern.ch/record/2270008.
  160. P. M. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, Phys. Rev. D78 (2008) 013004, arXiv:0802.0007 [hep-ph].
  161. STAR Collaboration, H. Agakishiev et al., “High pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT non-photonic electron production in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s=200𝑠200\sqrt{s}=200square-root start_ARG italic_s end_ARG = 200 GeV”, Phys. Rev. D 83 (2011) 052006, arXiv:1102.2611 [nucl-ex].
  162. PHENIX Collaboration, A. Adare et al., “Measurement of high-pTsubscript𝑝𝑇p_{T}italic_p start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT single electrons from heavy-flavor decays in p+p𝑝𝑝p+pitalic_p + italic_p collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 200 GeV”, Phys. Rev. Lett. 97 (2006) 252002, arXiv:hep-ex/0609010.
  163. ALICE Collaboration, S. Acharya et al., “Measurement of beauty and charm production in pp collisions at s=5.02𝑠5.02\sqrt{s}=5.02square-root start_ARG italic_s end_ARG = 5.02 TeV via non-prompt and prompt D mesons”, JHEP 05 (2021) 220, arXiv:2102.13601 [nucl-ex].
  164. STAR Collaboration, L. Adamczyk et al., “Measurements of D0superscript𝐷0D^{0}italic_D start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and D*superscript𝐷D^{*}italic_D start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT Production in p+p𝑝𝑝p+pitalic_p + italic_p Collisions at s=200𝑠200\sqrt{s}=200square-root start_ARG italic_s end_ARG = 200 GeV”, Phys. Rev. D 86 (2012) 072013, arXiv:1204.4244 [nucl-ex].
  165. CDF Collaboration, D. Acosta et al., “Measurement of prompt charm meson production cross sections in p⁢p¯𝑝¯𝑝p\bar{p}italic_p over¯ start_ARG italic_p end_ARG collisions at s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV”, Phys. Rev. Lett. 91 (2003) 241804, arXiv:hep-ex/0307080.
  166. ALICE Collaboration, S. Acharya et al., “Charm-quark fragmentation fractions and production cross section at midrapidity in pp collisions at the LHC”, Phys. Rev. D 105 (2022) L011103, arXiv:2105.06335 [nucl-ex].
  167. ALICE Collaboration, B. B. Abelev et al., “Beauty production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 2.76 TeV measured via semi-electronic decays”, Phys. Lett. B 738 (2014) 97–108, arXiv:1405.4144 [nucl-ex].
  168. R. Averbeck, N. Bastid, Z. C. del Valle, P. Crochet, A. Dainese, and X. Zhang, “Reference Heavy Flavour Cross Sections in pp Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 2.76 TeV, using a pQCD-Driven s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG-Scaling of ALICE Measurements at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 TeV”, arXiv:1107.3243 [hep-ph].
  169. ALICE Collaboration, B. B. Abelev et al., “Beauty production in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 2.76 TeV measured via semi-electronic decays”, Phys. Lett. B738 (2014) 97–108, arXiv:1405.4144 [nucl-ex].
  170. Z.-B. Kang, I. Vitev, E. Wang, H. Xing, and C. Zhang, “Multiple scattering effects on heavy meson production in p+A collisions at backward rapidity”, Phys. Lett. B 740 (2015) 23–29, arXiv:1409.2494 [hep-ph].
  171. S. Weber, A. Dubla, A. Andronic, and A. Morsch, “Elucidating the multiplicity dependence of J/ψJ𝜓\mathrm{J}/\psiroman_J / italic_ψ production in proton–proton collisions with PYTHIA8”, Eur. Phys. J. C 79 (2019) 36, arXiv:1811.07744 [nucl-th].
  172. “A study of different colour reconnection settings for Pythia8 generator using underlying event observables”, ATL-PHYS-PUB-2017-008. https://cds.cern.ch/record/2262253.
  173. J. R. Christiansen and P. Z. Skands, “String Formation Beyond Leading Colour”, JHEP 08 (2015) 003, arXiv:1505.01681 [hep-ph].
  174. K. Werner, B. Guiot, I. Karpenko, T. Pierog, and G. Sophys, “Charm production in high multiplicity pp events”, in 7th International Workshop on Multiple Partonic Interactions at the LHC, pp. 66–70. 2016. arXiv:1602.03414 [nucl-th].
  175. ALICE Collaboration, S. Acharya et al., “Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 80 (2020) 167, arXiv:1908.01861 [nucl-ex].
  176. K. Werner, I. Karpenko, T. Pierog, M. Bleicher, and K. Mikhailov, “Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions”, Phys. Rev. C 82 (2010) 044904, arXiv:1004.0805 [nucl-th].
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.