Computing quadratic points on modular curves $X_0(N)$ (2303.12566v2)
Abstract: In this paper we improve on existing methods to compute quadratic points on modular curves and apply them to successfully find all the quadratic points on all modular curves $X_0(N)$ of genus up to $8$, and genus up to $10$ with $N$ prime, for which they were previously unknown. The values of $N$ we consider are contained in the set [ \mathcal{L}={58, 68, 74, 76, 80, 85, 97, 98, 100, 103, 107, 109, 113, 121, 127 }.] We obtain that all the non-cuspidal quadratic points on $X_0(N)$ for $N\in \mathcal{L}$ are CM points, except for one pair of Galois conjugate points on $X_0(103)$ defined over $\mathbb{Q}(\sqrt{2885})$. We also compute the $j$-invariants of the elliptic curves parametrised by these points, and for the CM points determine their geometric endomorphism rings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.