Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed Design Analysis of Regularization-Based Continual Learning (2303.10263v2)

Published 17 Mar 2023 in cs.LG

Abstract: We consider a continual learning (CL) problem with two linear regression tasks in the fixed design setting, where the feature vectors are assumed fixed and the labels are assumed to be random variables. We consider an $\ell_2$-regularized CL algorithm, which computes an Ordinary Least Squares parameter to fit the first dataset, then computes another parameter that fits the second dataset under an $\ell_2$-regularization penalizing its deviation from the first parameter, and outputs the second parameter. For this algorithm, we provide tight bounds on the average risk over the two tasks. Our risk bounds reveal a provable trade-off between forgetting and intransigence of the $\ell_2$-regularized CL algorithm: with a large regularization parameter, the algorithm output forgets less information about the first task but is intransigent to extract new information from the second task; and vice versa. Our results suggest that catastrophic forgetting could happen for CL with dissimilar tasks (under a precise similarity measurement) and that a well-tuned $\ell_2$-regularization can partially mitigate this issue by introducing intransigence.

Citations (4)

Summary

We haven't generated a summary for this paper yet.