Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On well-posedness for thick spray equations (2303.09467v1)

Published 16 Mar 2023 in math.AP

Abstract: In this paper, we prove the local in time well-posedness of thick spray equations in Sobolev spaces, for initial data satisfying a Penrose-type stability condition. This system is a coupling between particles described by a kinetic equation and a surrounding fluid governed by compressible Navier-Stokes equations. In the thick spray regime, the volume fraction of the dispersed phase is not negligible compared to that of the fluid. We identify a suitable stability condition bearing on the initial conditions that provides estimates without loss, ensuring that the system is well-posed. It coincides with a Penrose condition appearing in earlier works on singular Vlasov equations. We also rely on crucial new estimates for averaging operators. Our approach allows to treat many variants of the model, such as collisions in the kinetic equation, non-barotropic fluid or density-dependent drag force.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.