Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced detection of the presence and severity of COVID-19 from CT scans using lung segmentation

Published 16 Mar 2023 in eess.IV, cs.CV, and cs.LG | (2303.09440v2)

Abstract: Improving automated analysis of medical imaging will provide clinicians more options in providing care for patients. The 2023 AI-enabled Medical Image Analysis Workshop and Covid-19 Diagnosis Competition (AI-MIA-COV19D) provides an opportunity to test and refine machine learning methods for detecting the presence and severity of COVID-19 in patients from CT scans. This paper presents version 2 of Cov3d, a deep learning model submitted in the 2022 competition. The model has been improved through a preprocessing step which segments the lungs in the CT scan and crops the input to this region. It results in a validation macro F1 score for predicting the presence of COVID-19 in the CT scans at 93.2% which is significantly above the baseline of 74\%. It gives a macro F1 score for predicting the severity of COVID-19 on the validation set for task 2 as 72.8% which is above the baseline of 38%.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.