Papers
Topics
Authors
Recent
Search
2000 character limit reached

Network-based Control of Epidemic via Flattening the Infection Curve: High-Clustered vs. Low-Clustered Social Networks

Published 16 Mar 2023 in cs.SI, cs.CY, cs.SY, eess.SY, and physics.soc-ph | (2303.09173v1)

Abstract: Recent studies in network science and control have shown a meaningful relationship between the epidemic processes (e.g., COVID-19 spread) and some network properties. This paper studies how such network properties, namely clustering coefficient and centrality measures (or node influence metrics), affect the spread of viruses and the growth of epidemics over scale-free networks. The results can be used to target individuals (the nodes in the network) to \textit{flatten the infection curve}. This so-called flattening of the infection curve is to reduce the health service costs and burden to the authorities/governments. Our Monte-Carlo simulation results show that clustered networks are, in general, easier to flatten the infection curve, i.e., with the same connectivity and the same number of isolated individuals they result in more flattened curves. Moreover, distance-based centrality measures, which target the nodes based on their average network distance to other nodes (and not the node degrees), are better choices for targeting individuals for isolation/vaccination.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.