Papers
Topics
Authors
Recent
Search
2000 character limit reached

Auxiliary Splines Space Preconditioning for B-Splines Finite Elements: The case of $\bm{H}(\bm{curl},Ω)$ and $\bm{H}(div,Ω)$ elliptic problems

Published 15 Mar 2023 in math.NA and cs.NA | (2303.08375v1)

Abstract: This paper presents a study of large linear systems resulting from the regular $B$-splines finite element discretization of the $\bm{curl}-\bm{curl}$ and $\bm{grad}-div$ elliptic problems on unit square/cube domains. We consider systems subject to both homogeneous essential and natural boundary conditions. Our objective is to develop a preconditioning strategy that is optimal and robust, based on the Auxiliary Space Preconditioning method proposed by Hiptmair et al. \cite{hiptmair2007nodal}. Our approach is demonstrated to be robust with respect to mesh size, and we also show how it can be combined with the Generalized Locally Toeplitz (GLT) sequences analysis presented in \cite{mazza2019isogeometric} to derive an algorithm that is optimal and stable with respect to spline degree. Numerical tests are conducted to illustrate the effectiveness of our approach.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.