A Feature-based Approach for the Recognition of Image Quality Degradation in Automotive Applications (2303.07100v1)
Abstract: Cameras play a crucial role in modern driver assistance systems and are an essential part of the sensor technology for automated driving. The quality of images captured by in-vehicle cameras highly influences the performance of visual perception systems. This paper presents a feature-based algorithm to detect certain effects that can degrade image quality in automotive applications. The algorithm is based on an intelligent selection of significant features. Due to the small number of features, the algorithm performs well even with small data sets. Experiments with different data sets show that the algorithm can detect soiling adhering to camera lenses and classify different types of image degradation.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.