Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal Parameter Configurations for Sequential Optimization of Variational Quantum Eigensolver (2303.07082v1)

Published 13 Mar 2023 in quant-ph

Abstract: Variational Quantum Eigensolver (VQE) is a hybrid algorithm for finding the minimum eigenvalue/vector of a given Hamiltonian by optimizing a parametrized quantum circuit (PQC) using a classical computer. Sequential optimization methods, which are often used in quantum circuit tensor networks, are popular for optimizing the parametrized gates of PQCs. This paper focuses on the case where the components to be optimized are single-qubit gates, in which the analytic optimization of a single-qubit gate is sequentially performed. The analytical solution is given by diagonalization of a matrix whose elements are computed from the expectation values of observables specified by a set of predetermined parameters which we call the parameter configurations. In this study, we first show that the optimization accuracy significantly depends on the choice of parameter configurations due to the statistical errors in the expectation values. We then identify a metric that quantifies the optimization accuracy of a parameter configuration for all possible statistical errors, named configuration overhead/cost or C-cost. We theoretically provide the lower bound of C-cost and show that, for the minimum size of parameter configurations, the lower bound is achieved if and only if the parameter configuration satisfies the so-called equiangular line condition. Finally, we provide numerical experiments demonstrating that the optimal parameter configuration exhibits the best result in several VQE problems. We hope that this general statistical methodology will enhance the efficacy of sequential optimization of PQCs for solving practical problems with near-term quantum devices.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.