Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Papaya: Federated Learning, but Fully Decentralized (2303.06189v1)

Published 10 Mar 2023 in cs.LG and cs.DC

Abstract: Federated Learning systems use a centralized server to aggregate model updates. This is a bandwidth and resource-heavy constraint and exposes the system to privacy concerns. We instead implement a peer to peer learning system in which nodes train on their own data and periodically perform a weighted average of their parameters with that of their peers according to a learned trust matrix. So far, we have created a model client framework and have been using this to run experiments on the proposed system using multiple virtual nodes which in reality exist on the same computer. We used this strategy as stated in Iteration 1 of our proposal to prove the concept of peer to peer learning with shared parameters. We now hope to run more experiments and build a more deployable real world system for the same.

Summary

We haven't generated a summary for this paper yet.