Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Real Time Recurrent Learning through combined activity and parameter sparsity (2303.05641v1)

Published 10 Mar 2023 in cs.LG and cs.AI

Abstract: Backpropagation through time (BPTT) is the standard algorithm for training recurrent neural networks (RNNs), which requires separate simulation phases for the forward and backward passes for inference and learning, respectively. Moreover, BPTT requires storing the complete history of network states between phases, with memory consumption growing proportional to the input sequence length. This makes BPTT unsuited for online learning and presents a challenge for implementation on low-resource real-time systems. Real-Time Recurrent Learning (RTRL) allows online learning, and the growth of required memory is independent of sequence length. However, RTRL suffers from exceptionally high computational costs that grow proportional to the fourth power of the state size, making RTRL computationally intractable for all but the smallest of networks. In this work, we show that recurrent networks exhibiting high activity sparsity can reduce the computational cost of RTRL. Moreover, combining activity and parameter sparsity can lead to significant enough savings in computational and memory costs to make RTRL practical. Unlike previous work, this improvement in the efficiency of RTRL can be achieved without using any approximations for the learning process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Anand Subramoney (17 papers)
Citations (1)