Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Rosický Tangent Categories of Algebras over an Operad (2303.05434v5)

Published 9 Mar 2023 in math.CT

Abstract: Tangent categories provide a categorical axiomatization of the tangent bundle. There are many interesting examples and applications of tangent categories in a variety of areas such as differential geometry, algebraic geometry, algebra, and even computer science. The purpose of this paper is to expand the theory of tangent categories in a new direction: the theory of operads. The main result of this paper is that both the category of algebras of an operad and its opposite category are tangent categories. The tangent bundle for the category of algebras is given by the semi-direct product, while the tangent bundle for the opposite category of algebras is constructed using the module of K\"ahler differentials, and these tangent bundles are in fact adjoints of one another. To prove these results, we first prove that the category of algebras of a coCartesian differential monad is a tangent category. We then show that the monad associated to any operad is a coCartesian differential monad. This also implies that we can construct Cartesian differential categories from operads. Therefore, operads provide a bountiful source of examples of tangent categories and Cartesian differential categories, which both recaptures previously known examples and also yield new interesting examples. We also discuss how certain basic tangent category notions recapture well-known concepts in the theory of operads.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.