Semi-Federated Learning for Collaborative Intelligence in Massive IoT Networks
Abstract: Implementing existing federated learning in massive Internet of Things (IoT) networks faces critical challenges such as imbalanced and statistically heterogeneous data and device diversity. To this end, we propose a semi-federated learning (SemiFL) framework to provide a potential solution for the realization of intelligent IoT. By seamlessly integrating the centralized and federated paradigms, our SemiFL framework shows high scalability in terms of the number of IoT devices even in the presence of computing-limited sensors. Furthermore, compared to traditional learning approaches, the proposed SemiFL can make better use of distributed data and computing resources, due to the collaborative model training between the edge server and local devices. Simulation results show the effectiveness of our SemiFL framework for massive IoT networks. The code can be found at https://github.com/niwanli/SemiFL_IoT.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.