Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Federated Learning for Collaborative Intelligence in Massive IoT Networks (2303.05048v1)

Published 9 Mar 2023 in cs.LG and cs.DC

Abstract: Implementing existing federated learning in massive Internet of Things (IoT) networks faces critical challenges such as imbalanced and statistically heterogeneous data and device diversity. To this end, we propose a semi-federated learning (SemiFL) framework to provide a potential solution for the realization of intelligent IoT. By seamlessly integrating the centralized and federated paradigms, our SemiFL framework shows high scalability in terms of the number of IoT devices even in the presence of computing-limited sensors. Furthermore, compared to traditional learning approaches, the proposed SemiFL can make better use of distributed data and computing resources, due to the collaborative model training between the edge server and local devices. Simulation results show the effectiveness of our SemiFL framework for massive IoT networks. The code can be found at https://github.com/niwanli/SemiFL_IoT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wanli Ni (43 papers)
  2. Jingheng Zheng (5 papers)
  3. Hui Tian (167 papers)
Citations (23)