Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semi-Federated Learning for Collaborative Intelligence in Massive IoT Networks

Published 9 Mar 2023 in cs.LG and cs.DC | (2303.05048v1)

Abstract: Implementing existing federated learning in massive Internet of Things (IoT) networks faces critical challenges such as imbalanced and statistically heterogeneous data and device diversity. To this end, we propose a semi-federated learning (SemiFL) framework to provide a potential solution for the realization of intelligent IoT. By seamlessly integrating the centralized and federated paradigms, our SemiFL framework shows high scalability in terms of the number of IoT devices even in the presence of computing-limited sensors. Furthermore, compared to traditional learning approaches, the proposed SemiFL can make better use of distributed data and computing resources, due to the collaborative model training between the edge server and local devices. Simulation results show the effectiveness of our SemiFL framework for massive IoT networks. The code can be found at https://github.com/niwanli/SemiFL_IoT.

Citations (23)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.