Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gauges and Accelerated Optimization over Smooth and/or Strongly Convex Sets

Published 9 Mar 2023 in math.OC and cs.LG | (2303.05037v3)

Abstract: We consider feasibility and constrained optimization problems defined over smooth and/or strongly convex sets. These notions mirror their popular function counterparts but are much less explored in the first-order optimization literature. We propose new scalable, projection-free, accelerated first-order methods in these settings. Our methods avoid linear optimization or projection oracles, only using cheap one-dimensional linesearches and normal vector computations. Despite this, we derive optimal accelerated convergence guarantees of $O(1/T)$ for strongly convex problems, $O(1/T2)$ for smooth problems, and accelerated linear convergence given both. Our algorithms and analysis are based on novel characterizations of the Minkowski gauge of smooth and/or strongly convex sets, which may be of independent interest: although the gauge is neither smooth nor strongly convex, we show the gauge squared inherits any structure present in the set.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.