Papers
Topics
Authors
Recent
Search
2000 character limit reached

Automatic Debiased Learning from Positive, Unlabeled, and Exposure Data

Published 8 Mar 2023 in cs.LG and stat.ML | (2303.04797v1)

Abstract: We address the issue of binary classification from positive and unlabeled data (PU classification) with a selection bias in the positive data. During the observation process, (i) a sample is exposed to a user, (ii) the user then returns the label for the exposed sample, and (iii) we however can only observe the positive samples. Therefore, the positive labels that we observe are a combination of both the exposure and the labeling, which creates a selection bias problem for the observed positive samples. This scenario represents a conceptual framework for many practical applications, such as recommender systems, which we refer to as learning from positive, unlabeled, and exposure data'' (PUE classification). To tackle this problem, we initially assume access to data with exposure labels. Then, we propose a method to identify the function of interest using a strong ignorability assumption and develop anAutomatic Debiased PUE'' (ADPUE) learning method. This algorithm directly debiases the selection bias without requiring intermediate estimates, such as the propensity score, which is necessary for other learning methods. Through experiments, we demonstrate that our approach outperforms traditional PU learning methods on various semi-synthetic datasets.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.