Papers
Topics
Authors
Recent
2000 character limit reached

Multilevel Diffusion: Infinite Dimensional Score-Based Diffusion Models for Image Generation

Published 8 Mar 2023 in cs.LG, cs.CV, math.PR, and stat.ML | (2303.04772v4)

Abstract: Score-based diffusion models (SBDM) have recently emerged as state-of-the-art approaches for image generation. Existing SBDMs are typically formulated in a finite-dimensional setting, where images are considered as tensors of finite size. This paper develops SBDMs in the infinite-dimensional setting, that is, we model the training data as functions supported on a rectangular domain. In addition to the quest for generating images at ever-higher resolutions, our primary motivation is to create a well-posed infinite-dimensional learning problem that we can discretize consistently on multiple resolution levels. We thereby intend to obtain diffusion models that generalize across different resolution levels and improve the efficiency of the training process. We demonstrate how to overcome two shortcomings of current SBDM approaches in the infinite-dimensional setting. First, we modify the forward process using trace class operators to ensure that the latent distribution is well-defined in the infinite-dimensional setting and derive the reverse processes for finite-dimensional approximations. Second, we illustrate that approximating the score function with an operator network is beneficial for multilevel training. After deriving the convergence of the discretization and the approximation of multilevel training, we demonstrate some practical benefits of our infinite-dimensional SBDM approach on a synthetic Gaussian mixture example, the MNIST dataset, and a dataset generated from a nonlinear 2D reaction-diffusion equation.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.