Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Predictive Control with Gaussian-Process-Supported Dynamical Constraints for Autonomous Vehicles (2303.04725v1)

Published 8 Mar 2023 in eess.SY, cs.LG, cs.RO, cs.SY, and math.OC

Abstract: We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior. The proposed approach employs the uncertainty about the GP's prediction to achieve safety. A multi-mode predictive control approach considers the possible intentions of the human drivers. While the intentions are represented by different Gaussian processes, their probabilities foreseen in the observed behaviors are determined by a suitable online classification. Intentions below a certain probability threshold are neglected to improve performance. The proposed multi-mode model predictive control approach with Gaussian process regression support enables repeated feasibility and probabilistic constraint satisfaction with high probability. The approach is underlined in simulation, considering real-world measurements for training the Gaussian processes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.