Papers
Topics
Authors
Recent
Search
2000 character limit reached

Engineering topological phases of any winding and Chern numbers in extended Su-Schrieffer-Heeger models

Published 8 Mar 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci | (2303.04523v2)

Abstract: Simple route of engineering topological phases for any desired value of winding and Chern numbers is found in the Su-Schrieffer-Heeger (SSH) model by adding a further neighbor hopping term of varying distances. It is known that the standard SSH model yields a single topological phase with winding number, $\nu=1$. In this study it is shown that how one can generate topological phases with any values of winding numbers, for examples, $\nu=\pm 1,\pm 2,\pm 3,\cdots,$ in the presence of a single further neighbor term which preserves inversion, particle-hole and chiral symmetries. Quench dynamics of the topological and trivial phases are studied in the presence of a specific nonlinear term. Another version of SSH model with additional modulating nearest neighbor and next-nearest-neighbor hopping parameters was introduced before which exhibit a single topological phase characterized by Chern number, $\mathcal C=\pm 1$. Standard form of inversion, particle-hole and chiral symmetries are broken in this model. Here this model has been studied in the presence of several types of parametrization among which, for a special case the system is found to yield a series of phases with Chern numbers, $\mathcal C=\pm 1,\pm 2,\pm 3,\cdots.$ In another parametrization, multiple crossings within the edge states energy lines are found in both trivial and topological phases. Topological phase diagrams are drawn for every case. Emergence of spurious topological phases is also reported.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.