Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NASTyLinker: NIL-Aware Scalable Transformer-based Entity Linker (2303.04426v2)

Published 8 Mar 2023 in cs.CL, cs.AI, and cs.IR

Abstract: Entity Linking (EL) is the task of detecting mentions of entities in text and disambiguating them to a reference knowledge base. Most prevalent EL approaches assume that the reference knowledge base is complete. In practice, however, it is necessary to deal with the case of linking to an entity that is not contained in the knowledge base (NIL entity). Recent works have shown that, instead of focusing only on affinities between mentions and entities, considering inter-mention affinities can be used to represent NIL entities by producing clusters of mentions. At the same time, inter-mention affinities can help to substantially improve linking performance for known entities. With NASTyLinker, we introduce an EL approach that is aware of NIL entities and produces corresponding mention clusters while maintaining high linking performance for known entities. The approach clusters mentions and entities based on dense representations from Transformers and resolves conflicts (if more than one entity is assigned to a cluster) by computing transitive mention-entity affinities. We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL entities. Further, we apply the presented approach to an actual EL task, namely to knowledge graph population by linking entities in Wikipedia listings, and provide an analysis of the outcome.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nicolas Heist (9 papers)
  2. Heiko Paulheim (65 papers)
Citations (8)