Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sufficient dimension reduction for feature matrices (2303.04286v1)

Published 7 Mar 2023 in stat.ME, cs.LG, and stat.ML

Abstract: We address the problem of sufficient dimension reduction for feature matrices, which arises often in sensor network localization, brain neuroimaging, and electroencephalography analysis. In general, feature matrices have both row- and column-wise interpretations and contain structural information that can be lost with naive vectorization approaches. To address this, we propose a method called principal support matrix machine (PSMM) for the matrix sufficient dimension reduction. The PSMM converts the sufficient dimension reduction problem into a series of classification problems by dividing the response variables into slices. It effectively utilizes the matrix structure by finding hyperplanes with rank-1 normal matrix that optimally separate the sliced responses. Additionally, we extend our approach to the higher-order tensor case. Our numerical analysis demonstrates that the PSMM outperforms existing methods and has strong interpretability in real data applications.

Summary

We haven't generated a summary for this paper yet.