Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 68 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Resolutions of toric subvarieties by line bundles and applications (2303.03763v3)

Published 7 Mar 2023 in math.AG

Abstract: Given any toric subvariety $Y$ of a smooth toric variety $X$ of codimension $k$, we construct a length $k$ resolution of $\mathcal O_Y$ by line bundles on $X$. Furthermore, these line bundles can all be chosen to be direct summands of the pushforward of $\mathcal O_X$ under the map of toric Frobenius. The resolutions are built from a stratification of a real torus that was introduced by Bondal and plays a role in homological mirror symmetry. As a corollary, we obtain a virtual analogue of Hilbert's syzygy theorem for smooth projective toric varieties conjectured by Berkesch, Erman, and Smith. Additionally, we prove that the Rouquier dimension of the bounded derived category of coherent sheaves on a toric variety is equal to the dimension of the variety, settling a conjecture of Orlov for these examples. We also prove Bondal's claim that the pushforward of the structure sheaf under toric Frobenius generates the derived category of a smooth toric variety and formulate a refinement of Uehara's conjecture that this remains true for arbitrary line bundles.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.