Papers
Topics
Authors
Recent
Search
2000 character limit reached

On existence of minimizers for weighted $L^p$-Hardy inequalities on $C^{1,γ}$-domains with compact boundary

Published 6 Mar 2023 in math.AP, math.FA, and math.SP | (2303.03527v3)

Abstract: Let $p \in (1,\infty)$, $\alpha\in \mathbb{R}$, and $\Omega\subsetneq \mathbb{R}N$ be a $C{1,\gamma}$-domain with a compact boundary $\partial \Omega$, where $\gamma\in (0,1]$. Denote by $\delta_{\Omega}(x)$ the distance of a point $x\in \Omega$ to $\partial \Omega$. Let $\widetilde{W}{1,p;\alpha}_0(\Omega)$ be the closure of $C_c{\infty}(\Omega)$ in $\widetilde{W}{1,p;\alpha}(\Omega)$, where $$\widetilde{W}{1,p;\alpha}(\Omega):= \left{\varphi \in {W}{1,p}_{\mathrm{loc}} (\Omega) \mid \left( | \, |\nabla \varphi \, ||{Lp(\Omega;\delta{\Omega}{-\alpha})}p + |\varphi|{Lp(\Omega;\delta{\Omega}{-(\alpha+p)})}p\right)<\infty !\right}.$$ We study the following two variational constants: the weighted Hardy constant \begin{align*} H_{\alpha,p}(\Omega): =!\inf \left{\int_{\Omega} |\nabla \varphi|p \delta_{\Omega}{-\alpha} \mathrm{d}x \biggm| \int_{\Omega} |\varphi|p \delta_{\Omega}{-(\alpha+p)} \mathrm{d}x!=!1, \varphi \in \widetilde{W}{1,p;\alpha}_0(\Omega) \right} , \end{align*} and the weighted Hardy constant at infinity \begin{align*} \lambda_{\alpha,p}{\infty}(\Omega) :=\sup_{K\Subset \Omega}\, \inf_{W{1,p}_{c}(\Omega\setminus \overline{K})} \left{\int_{\Omega\setminus \overline{K}} |\nabla \varphi|p \delta_{\Omega}{-\alpha} \mathrm{d}x \biggm| \int_{\Omega\setminus \overline{K}} |\varphi|p \delta_{\Omega}{-(\alpha+p)} \mathrm{d}x=1 \right}. \end{align*} We show that $H_{\alpha,p}(\Omega)$ is attained if and only if the spectral gap $\Gamma_{\alpha,p}(\Omega):= \lambda_{\alpha,p}{\infty}(\Omega)-H_{\alpha,p}(\Omega)$ is strictly positive. Moreover, we obtain tight decay estimates for the corresponding minimizers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.