Papers
Topics
Authors
Recent
2000 character limit reached

Interpretable Architecture Neural Networks for Function Visualization

Published 3 Mar 2023 in cs.LG, cs.HC, stat.ME, and stat.ML | (2303.03393v1)

Abstract: In many scientific research fields, understanding and visualizing a black-box function in terms of the effects of all the input variables is of great importance. Existing visualization tools do not allow one to visualize the effects of all the input variables simultaneously. Although one can select one or two of the input variables to visualize via a 2D or 3D plot while holding other variables fixed, this presents an oversimplified and incomplete picture of the model. To overcome this shortcoming, we present a new visualization approach using an interpretable architecture neural network (IANN) to visualize the effects of all the input variables directly and simultaneously. We propose two interpretable structures, each of which can be conveniently represented by a specific IANN, and we discuss a number of possible extensions. We also provide a Python package to implement our proposed method. The supplemental materials are available online.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.