Papers
Topics
Authors
Recent
Search
2000 character limit reached

Faster Learning of Temporal Action Proposal via Sparse Multilevel Boundary Generator

Published 6 Mar 2023 in cs.CV and cs.AI | (2303.03166v1)

Abstract: Temporal action localization in videos presents significant challenges in the field of computer vision. While the boundary-sensitive method has been widely adopted, its limitations include incomplete use of intermediate and global information, as well as an inefficient proposal feature generator. To address these challenges, we propose a novel framework, Sparse Multilevel Boundary Generator (SMBG), which enhances the boundary-sensitive method with boundary classification and action completeness regression. SMBG features a multi-level boundary module that enables faster processing by gathering boundary information at different lengths. Additionally, we introduce a sparse extraction confidence head that distinguishes information inside and outside the action, further optimizing the proposal feature generator. To improve the synergy between multiple branches and balance positive and negative samples, we propose a global guidance loss. Our method is evaluated on two popular benchmarks, ActivityNet-1.3 and THUMOS14, and is shown to achieve state-of-the-art performance, with a better inference speed (2.47xBSN++, 2.12xDBG). These results demonstrate that SMBG provides a more efficient and simple solution for generating temporal action proposals. Our proposed framework has the potential to advance the field of computer vision and enhance the accuracy and speed of temporal action localization in video analysis.The code and models are made available at \url{https://github.com/zhouyang-001/SMBG-for-temporal-action-proposal}.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.