Papers
Topics
Authors
Recent
2000 character limit reached

Exact Modeling of Non-Gaussian Measurement Uncertainty in Distribution System State Estimation

Published 6 Mar 2023 in eess.SY and cs.SY | (2303.03029v1)

Abstract: State estimation allows to monitor power networks, exploiting field measurements to derive the most likely grid state. In the literature, measurement errors are usually assumed to follow zero-mean Gaussian distributions; however, it has been shown that this assumption often does not hold. One such example is when considering pseudo-measurements. In distribution networks, a significant amount of pseudo-measurements might be necessary, due to the scarcity of real-time measurements. In this paper, a state estimator is presented which allows to model measurement uncertainty with any continuous distribution, without approximations. This becomes possible by writing state estimation as a general maximum-likelihood estimation-based constrained optimization problem. To realistically describe distribution networks, three-phase unbalanced power flow equations are used. Results are presented that illustrate the differences in accuracy and computational effort between different uncertainty modeling methods, for the IEEE European Low Voltage Test Feeder.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.