Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Saliency-Guided Channel Pruning for Deep Visual Detectors in Autonomous Driving (2303.02512v1)

Published 4 Mar 2023 in cs.CV

Abstract: Deep neural network (DNN) pruning has become a de facto component for deploying on resource-constrained devices since it can reduce memory requirements and computation costs during inference. In particular, channel pruning gained more popularity due to its structured nature and direct savings on general hardware. However, most existing pruning approaches utilize importance measures that are not directly related to the task utility. Moreover, few in the literature focus on visual detection models. To fill these gaps, we propose a novel gradient-based saliency measure for visual detection and use it to guide our channel pruning. Experiments on the KITTI and COCO traffic datasets demonstrate our pruning method's efficacy and superiority over state-of-the-art competing approaches. It can even achieve better performance with fewer parameters than the original model. Our pruning also demonstrates great potential in handling small-scale objects.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jung Im Choi (2 papers)
  2. Qing Tian (24 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.