Papers
Topics
Authors
Recent
Search
2000 character limit reached

Interpretable reduced-order modeling with time-scale separation

Published 3 Mar 2023 in stat.ML, cs.LG, cs.NA, and math.NA | (2303.02189v1)

Abstract: Partial Differential Equations (PDEs) with high dimensionality are commonly encountered in computational physics and engineering. However, finding solutions for these PDEs can be computationally expensive, making model-order reduction crucial. We propose such a data-driven scheme that automates the identification of the time-scales involved and can produce stable predictions forward in time as well as under different initial conditions not included in the training data. To this end, we combine a non-linear autoencoder architecture with a time-continuous model for the latent dynamics in the complex space. It readily allows for the inclusion of sparse and irregularly sampled training data. The learned, latent dynamics are interpretable and reveal the different temporal scales involved. We show that this data-driven scheme can automatically learn the independent processes that decompose a system of linear ODEs along the eigenvectors of the system's matrix. Apart from this, we demonstrate the applicability of the proposed framework in a hidden Markov Model and the (discretized) Kuramoto-Shivashinsky (KS) equation. Additionally, we propose a probabilistic version, which captures predictive uncertainties and further improves upon the results of the deterministic framework.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.