Papers
Topics
Authors
Recent
2000 character limit reached

Deep Momentum Multi-Marginal Schrödinger Bridge

Published 3 Mar 2023 in stat.ML and cs.LG | (2303.01751v3)

Abstract: It is a crucial challenge to reconstruct population dynamics using unlabeled samples from distributions at coarse time intervals. Recent approaches such as flow-based models or Schr\"odinger Bridge (SB) models have demonstrated appealing performance, yet the inferred sample trajectories either fail to account for the underlying stochasticity or are $\underline{D}$eep $\underline{M}$omentum Multi-Marginal $\underline{S}$chr\"odinger $\underline{B}$ridge(DMSB), a novel computational framework that learns the smooth measure-valued spline for stochastic systems that satisfy position marginal constraints across time. By tailoring the celebrated Bregman Iteration and extending the Iteration Proportional Fitting to phase space, we manage to handle high-dimensional multi-marginal trajectory inference tasks efficiently. Our algorithm outperforms baselines significantly, as evidenced by experiments for synthetic datasets and a real-world single-cell RNA sequence dataset. Additionally, the proposed approach can reasonably reconstruct the evolution of velocity distribution, from position snapshots only, when there is a ground truth velocity that is nevertheless inaccessible.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.