Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-Empowered Hybrid MIMO Beamforming (2303.01723v1)

Published 3 Mar 2023 in cs.IT, cs.AI, eess.SP, and math.IT

Abstract: Hybrid multiple-input multiple-output (MIMO) is an attractive technology for realizing extreme massive MIMO systems envisioned for future wireless communications in a scalable and power-efficient manner. However, the fact that hybrid MIMO systems implement part of their beamforming in analog and part in digital makes the optimization of their beampattern notably more challenging compared with conventional fully digital MIMO. Consequently, recent years have witnessed a growing interest in using data-aided AI tools for hybrid beamforming design. This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design. We discuss the architectural constraints and characterize the core challenges associated with hybrid beamforming optimization. We then present how these challenges are treated via conventional optimization, and identify different AI-aided design approaches. These can be roughly divided into purely data-driven deep learning models and different forms of deep unfolding techniques for combining AI with classical optimization.We provide a systematic comparative study between existing approaches including both numerical evaluations and qualitative measures. We conclude by presenting future research opportunities associated with the incorporation of AI in hybrid MIMO systems.

Citations (7)

Summary

We haven't generated a summary for this paper yet.