Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variational EP with Probabilistic Backpropagation for Bayesian Neural Networks (2303.01540v1)

Published 2 Mar 2023 in stat.ML and cs.LG

Abstract: I propose a novel approach for nonlinear Logistic regression using a two-layer neural network (NN) model structure with hierarchical priors on the network weights. I present a hybrid of expectation propagation called Variational Expectation Propagation approach (VEP) for approximate integration over the posterior distribution of the weights, the hierarchical scale parameters of the priors and zeta. Using a factorized posterior approximation I derive a computationally efficient algorithm, whose complexity scales similarly to an ensemble of independent sparse logistic models. The approach can be extended beyond standard activation functions and NN model structures to form flexible nonlinear binary predictors from multiple sparse linear models. I consider a hierarchical Bayesian model with logistic regression likelihood and a Gaussian prior distribution over the parameters called weights and hyperparameters. I work in the perspective of E step and M step for computing the approximating posterior and updating the parameters using the computed posterior respectively.

Summary

We haven't generated a summary for this paper yet.