Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Large-Scale Study of Personal Identifiability of Virtual Reality Motion Over Time (2303.01430v1)

Published 2 Mar 2023 in cs.CR

Abstract: In recent years, social virtual reality (VR), sometimes described as the "metaverse," has become widely available. With its potential comes risks, including risks to privacy. To understand these risks, we study the identifiability of participants' motion in VR in a dataset of 232 VR users with eight weekly sessions of about thirty minutes each, totaling 764 hours of social interaction. The sample is unique as we are able to study the effect of user, session, and time independently. We find that the number of sessions recorded greatly increases identifiability, and duration per session increases identifiability as well, but to a lesser degree. We also find that greater delay between training and testing sessions reduces identifiability. Ultimately, understanding the identifiability of VR activities will help designers, security professionals, and consumer advocates make VR safer.

Citations (12)

Summary

We haven't generated a summary for this paper yet.