Papers
Topics
Authors
Recent
2000 character limit reached

Effective Visualization and Analysis of Recommender Systems

Published 2 Mar 2023 in cs.IR and cs.HC | (2303.01136v1)

Abstract: Recommender system exists everywhere in the business world. From Goodreads to TikTok, customers of internet products become more addicted to the products thanks to the technology. Industrial practitioners focus on increasing the technical accuracy of recommender systems while at same time balancing other factors such as diversity and serendipity. In spite of the length of the research and development history of recommender systems, there has been little discussion on how to take advantage of visualization techniques to facilitate the algorithmic design of the technology. In this paper, we use a series of data analysis and visualization techniques such as Takens Embedding, Determinantal Point Process and Social Network Analysis to help people develop effective recommender systems by predicting intermediate computational cost and output performance. Our work is pioneering in the field, as to our limited knowledge, there have been few publications (if any) on visualization of recommender systems.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.