Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An interpretable machine-learned model for international oil trade network (2303.01121v1)

Published 2 Mar 2023 in physics.soc-ph

Abstract: Energy security and energy trade are the cornerstones of global economic and social development. The structural robustness of the international oil trade network (iOTN) plays an important role in the global economy. We integrate the machine learning optimization algorithm, game theory, and utility theory for learning an oil trade decision-making model which contains the benefit endowment and cost endowment of economies in international oil trades. We have reconstructed the network degree, clustering coefficient, and closeness of the iOTN well to verify the effectiveness of the model. In the end, policy simulations based on game theory and agent-based model are carried out in a more realistic environment. We find that the export-oriented economies are more vulnerable to be affected than import-oriented economies after receiving external shocks. Moreover, the impact of the increase and decrease of trade friction costs on the international oil trade is asymmetrical and there are significant differences between international organizations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.