Papers
Topics
Authors
Recent
Search
2000 character limit reached

Density fluctuations in weakly interacting particle systems via the Dean-Kawasaki equation

Published 1 Mar 2023 in math.AP, cs.NA, math.NA, and math.PR | (2303.00429v2)

Abstract: The Dean-Kawasaki equation - one of the most fundamental SPDEs of fluctuating hydrodynamics - has been proposed as a model for density fluctuations in weakly interacting particle systems. In its original form it is highly singular and fails to be renormalizable even by approaches such as regularity structures and paracontrolled distributions, hindering mathematical approaches to its rigorous justification. It has been understood recently that it is natural to introduce a suitable regularization, e.g., by applying a formal spatial discretization or by truncating high-frequency noise. In the present work, we prove that a regularization in form of a formal discretization of the Dean-Kawasaki equation indeed accurately describes density fluctuations in systems of weakly interacting diffusing particles: We show that in suitable weak metrics, the law of fluctuations as predicted by the discretized Dean-Kawasaki SPDE approximates the law of fluctuations of the original particle system, up to an error that is of arbitrarily high order in the inverse particle number and a discretization error. In particular, the Dean-Kawasaki equation provides a means for efficient and accurate simulations of density fluctuations in weakly interacting particle systems.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.