Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilevel Monte Carlo methods for the Dean-Kawasaki equation from Fluctuating Hydrodynamics (2311.08872v2)

Published 15 Nov 2023 in math.NA, cs.NA, math.AP, and math.PR

Abstract: Stochastic PDEs of Fluctuating Hydrodynamics are a powerful tool for the description of fluctuations in many-particle systems. In this paper, we develop and analyze a Multilevel Monte Carlo (MLMC) scheme for the Dean--Kawasaki equation, a pivotal representative of this class of SPDEs. We prove analytically and demonstrate numerically that our MLMC scheme provides a significant reduction in computational cost (with respect to a standard Monte Carlo method) in the simulation of the Dean--Kawasaki equation. Specifically, we link this reduction in cost to having a sufficiently large average particle density, and show that sizeable cost reductions can be obtained even when we have solutions with regions of low density. Numerical simulations are provided in the two-dimensional case, confirming our theoretical predictions. Our results are formulated entirely in terms of the law of distributions rather than in terms of strong spatial norms: this crucially allows for MLMC speed-ups altogether despite the Dean--Kawasaki equation being highly singular.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math., 119(1):123–161, 2011. ISSN 0029-599X,0945-3245. doi:10.1007/s00211-011-0377-0.
  2. Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT, 53(1):3–27, 2013. ISSN 0006-3835,1572-9125. doi:10.1007/s10543-012-0401-5.
  3. Optimal multigrid algorithms for calculating thermodynamic limits. Journal of Statistical Physics, 74:313–348, 1994. doi:10.1007/BF02186816.
  4. Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal., 51(1):322–352, 2013. ISSN 0036-1429,1095-7170. doi:10.1137/110853054.
  5. F. Chung and L. Lu. Concentration inequalities and martingale inequalities: a survey. Internet mathematics, 3(1):79–127, 2006.
  6. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci., 14(1):3–15, 2011. ISSN 1432-9360,1433-0369. doi:10.1007/s00791-011-0160-x.
  7. F. Cornalba and J. Fischer. The Dean–Kawasaki equation and the structure of density fluctuations in systems of diffusing particles. Arch. Rational Mech. Anal., 247(76), 2023. doi:10.1007/s00205-023-01903-7.
  8. Density fluctuations in weakly interacting particle systems via the Dean-Kawasaki equation. Preprint, 2023. URL https://arxiv.org/abs/2303.00429.
  9. Efficient white noise sampling and coupling for multilevel monte carlo with nonnested meshes. SIAM/ASA Journal on Uncertainty Quantification, 6(4):1630–1655, 2018. doi:10.1137/18M1175239.
  10. Conservative stochastic PDE and fluctuations of the symmetric simple exclusion process. Preprint, 2020. URL https://arxiv.org/abs/2012.02126.
  11. Weak error analysis for a nonlinear SPDE approximation of the Dean–Kawasaki equation. Stoch PDE: Anal. Comp., pages 1–26, 2024. URL https://doi.org/10.1007/s40072-024-00324-1.
  12. B. Fehrman and B. Gess. Large deviations for conservative stochastic PDE and non-equilibrium fluctuations. Preprint, 2019. URL https://arxiv.org/abs/1910.11860.
  13. M. B. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56(3):607–617, 2008. ISSN 0030-364X,1526-5463. doi:10.1287/opre.1070.0496.
  14. M. B. Giles. Multilevel Monte Carlo methods. Acta Numer., 24:259–328, 2015. ISSN 0962-4929,1474-0508. doi:10.1017/S096249291500001X.
  15. M. B. Giles and C. Reisinger. Stochastic finite differences and multilevel Monte Carlo for a class of SPDEs in finance. SIAM J. Financial Math., 3(1):572–592, 2012. ISSN 1945-497X. doi:10.1137/110841916.
  16. Paracontrolled distributions and singular PDEs. Forum Math. Pi, 3:e6, 75, 2015. ISSN 2050-5086. doi:10.1017/fmp.2015.2.
  17. M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014. ISSN 0020-9910,1432-1297. doi:10.1007/s00222-014-0505-4.
  18. A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation. Computational Mechanics, 64:937–949, 2019. doi:10.1007/s00466-019-01688-1.
  19. Dean–Kawasaki dynamics: ill-posedness vs. triviality. Electron. Commun. Probab., 24:Paper No. 8, 2019. doi:10.1214/19-ECP208.
  20. On Dean–Kawasaki dynamics with smooth drift potential. J. Stat. Phys., 178:666–681, 2020. doi:10.1007/s10955-019-02449-3.
  21. Course of theoretical physics. Vol. 6. Pergamon Press, Oxford, second edition, 1987. ISBN 0-08-033933-6; 0-08-033932-8. Fluid mechanics.
  22. C. McDiarmid. Concentration, probabilistic methods for algorithmic discrete mathematics, 195–248. Algorithms Combin, 16, 1998.
  23. Numerical solution of partial differential equations: an introduction. Cambridge university press, 2005.
  24. H. Spohn. Large scale dynamics of interacting particles. Springer Science & Business Media, 2012.
  25. Classical dynamical density functional theory: from fundamentals to applications. Advances in Physics, 69(2):121–247, 2020. doi:10.1080/00018732.2020.1854965.
Citations (1)

Summary

We haven't generated a summary for this paper yet.