Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lessons Learned Report: Super-Resolution for Detection Tasks in Engineering Problem-Solving (2303.00364v1)

Published 1 Mar 2023 in cs.CV and cs.LG

Abstract: We describe the lessons learned from targeting agricultural detection problem-solving, when subject to low resolution input maps, by means of Machine Learning-based super-resolution approaches. The underlying domain is the so-called agro-detection class of problems, and the specific objective is to learn a complementary ensemble of sporadic input maps. While super-resolution algorithms are branded with the capacity to enhance various attractive features in generic photography, we argue that they must meet certain requirements, and more importantly, that their outcome does not necessarily guarantee an improvement in engineering detection problem-solving (unlike so-called aesthetics/artistic super-resolution in ImageNet-like datasets). By presenting specific data-driven case studies, we outline a set of limitations and recommendations for deploying super-resolution algorithms for agro-detection problems. Another conclusion states that super-resolution algorithms can be used for learning missing spectral channels, and that their usage may result in some desired side-effects such as channels' synchronization.

Summary

We haven't generated a summary for this paper yet.