Papers
Topics
Authors
Recent
2000 character limit reached

Motivic geometry of two-loop Feynman integrals

Published 28 Feb 2023 in math.AG and hep-th | (2302.14840v1)

Abstract: We study the geometry and Hodge theory of the cubic hypersurfaces attached to two-loop Feynman integrals for generic physical parameters. We show that the Hodge structure attached to planar two-loop Feynman graphs decomposes into mixed Tate pieces and the Hodge structures of families of hyperelliptic, elliptic, or rational curves depending on the space-time dimension. For two-loop graphs with a small number of edges, we give more precise results. In particular, we recover a result of Bloch arXiv:2105.06132 that in the well-known double box example, there is an underlying family of elliptic curves, and we give a concrete description of these elliptic curves. We argue that the motive for the non-planar two-loop tardigrade graph is that of a K3 surface of Picard number 11 and determine the generic lattice polarization. Lastly, we show that generic members of the ice cream cone family of graph hypersurfaces correspond to pairs of sunset Calabi--Yau varieties.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.