Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mask3D: Pre-training 2D Vision Transformers by Learning Masked 3D Priors (2302.14746v1)

Published 28 Feb 2023 in cs.CV

Abstract: Current popular backbones in computer vision, such as Vision Transformers (ViT) and ResNets are trained to perceive the world from 2D images. However, to more effectively understand 3D structural priors in 2D backbones, we propose Mask3D to leverage existing large-scale RGB-D data in a self-supervised pre-training to embed these 3D priors into 2D learned feature representations. In contrast to traditional 3D contrastive learning paradigms requiring 3D reconstructions or multi-view correspondences, our approach is simple: we formulate a pre-text reconstruction task by masking RGB and depth patches in individual RGB-D frames. We demonstrate the Mask3D is particularly effective in embedding 3D priors into the powerful 2D ViT backbone, enabling improved representation learning for various scene understanding tasks, such as semantic segmentation, instance segmentation and object detection. Experiments show that Mask3D notably outperforms existing self-supervised 3D pre-training approaches on ScanNet, NYUv2, and Cityscapes image understanding tasks, with an improvement of +6.5% mIoU against the state-of-the-art Pri3D on ScanNet image semantic segmentation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ji Hou (25 papers)
  2. Xiaoliang Dai (44 papers)
  3. Zijian He (31 papers)
  4. Angela Dai (84 papers)
  5. Matthias Nießner (177 papers)
Citations (14)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets