Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Vietoris-Rips complexes of Finite Metric Spaces with Scale $2$ (2302.14664v3)

Published 28 Feb 2023 in math.CO

Abstract: We examine the homotopy types of Vietoris-Rips complexes on certain finite metric spaces at scale $2$. We consider the collections of subsets of $[m]={1, 2, \ldots, m}$ equipped with symmetric difference metric $d$, specifically, $\mathcal{F}m_n$, $\mathcal{F}nm\cup \mathcal{F}m{n+1}$, $\mathcal{F}nm\cup \mathcal{F}m{n+2}$, and $\mathcal{F}{\preceq A}m$. Here $\mathcal{F}m_n$ is the collection of size $n$ subsets of $[m]$ and $\mathcal{F}{\preceq A}m$ is the collection of subsets $\preceq A$ where $\preceq$ is a total order on the collections of subsets of $[m]$ and $A\subseteq [m]$ (see the definition of $\preceq$ in Section~\ref{Intro}). We prove that the Vietoris-Rips complexes $\mathcal{VR}(\mathcal{F}m_n, 2)$ and $\mathcal{VR}(\mathcal{F}nm\cup \mathcal{F}m{n+1}, 2)$ are either contractible or homotopy equivalent to a wedge sum of $S2$'s; also, the complexes $\mathcal{VR}(\mathcal{F}nm\cup \mathcal{F}m{n+2}, 2)$ and $\mathcal{VR}(\mathcal{F}{\preceq A}m, 2)$ are either contractible or homotopy equivalent to a wedge sum of $S3$'s. We provide inductive formula for these homotopy types extending the result of Barmak in \cite{Bar13} about the independence complexes of Kneser graphs \text{KG}${2, k}$ and the result of Adamaszek and Adams in \cite{AA22} about Vietoris-Rips complexes of hypercube graphs with scale $2$.

Summary

We haven't generated a summary for this paper yet.