Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mitigating Observation Biases in Crowdsourced Label Aggregation (2302.13100v1)

Published 25 Feb 2023 in cs.HC and cs.LG

Abstract: Crowdsourcing has been widely used to efficiently obtain labeled datasets for supervised learning from large numbers of human resources at low cost. However, one of the technical challenges in obtaining high-quality results from crowdsourcing is dealing with the variability and bias caused by the fact that it is humans execute the work, and various studies have addressed this issue to improve the quality by integrating redundantly collected responses. In this study, we focus on the observation bias in crowdsourcing. Variations in the frequency of worker responses and the complexity of tasks occur, which may affect the aggregation results when they are correlated with the quality of the responses. We also propose statistical aggregation methods for crowdsourcing responses that are combined with an observational data bias removal method used in causal inference. Through experiments using both synthetic and real datasets with/without artificially injected spam and colluding workers, we verify that the proposed method improves the aggregation accuracy in the presence of strong observation biases and robustness to both spam and colluding workers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ryosuke Ueda (3 papers)
  2. Koh Takeuchi (22 papers)
  3. Hisashi Kashima (63 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.