Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Extra Pixel Interpolation with Mask Processing for Medical Image Segmentation with Deep Learning (2302.11522v4)

Published 22 Feb 2023 in eess.IV and cs.CV

Abstract: Current mask processing operations rely on interpolation algorithms that do not produce extra pixels, such as nearest neighbor (NN) interpolation, as opposed to algorithms that do produce extra pixels, like bicubic (BIC) or bilinear (BIL) interpolation. In our previous study, the author proposed an alternative approach to NN-based mask processing and evaluated its effects on deep learning training outcomes. In this study, the author evaluated the effects of both BIC-based image and mask processing and BIC-and-NN-based image and mask processing versus NN-based image and mask processing. The evaluation revealed that the BIC-BIC model/network was an 8.9578 % (with image size 256 x 256) and a 1.0496 % (with image size 384 x 384) increase of the NN-NN network compared to the NN-BIC network which was an 8.3127 % (with image size 256 x 256) and a 0.2887 % (with image size 384 x 384) increase of the NN-NN network.

Citations (2)

Summary

We haven't generated a summary for this paper yet.