Papers
Topics
Authors
Recent
2000 character limit reached

Approximate spectral clustering density-based similarity for noisy datasets

Published 22 Feb 2023 in cs.LG, cs.AI, cs.IR, and cs.NE | (2302.11298v1)

Abstract: Approximate spectral clustering (ASC) was developed to overcome heavy computational demands of spectral clustering (SC). It maintains SC ability in predicting non-convex clusters. Since it involves a preprocessing step, ASC defines new similarity measures to assign weights on graph edges. Connectivity matrix (CONN) is an efficient similarity measure to construct graphs for ASC. It defines the weight between two vertices as the number of points assigned to them during vector quantization training. However, this relationship is undirected, where it is not clear which of the vertices is contributing more to that edge. Also, CONN could be tricked by noisy density between clusters. We defined a directed version of CONN, named DCONN, to get insights on vertices contributions to edges. Also, we provided filtering schemes to ensure CONN edges are highlighting potential clusters. Experiments reveal that the proposed filtering was highly efficient when noise cannot be tolerated by CONN.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.