Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-objective optimization of energy consumption and execution time in a single level cache memory for embedded systems (2302.11236v1)

Published 22 Feb 2023 in cs.NE and cs.AI

Abstract: Current embedded systems are specifically designed to run multimedia applications. These applications have a big impact on both performance and energy consumption. Both metrics can be optimized selecting the best cache configuration for a target set of applications. Multi-objective optimization may help to minimize both conflicting metrics in an independent manner. In this work, we propose an optimization method that based on Multi-Objective Evolutionary Algorithms, is able to find the best cache configuration for a given set of applications. To evaluate the goodness of candidate solutions, the execution of the optimization algorithm is combined with a static profiling methodology using several well-known simulation tools. Results show that our optimization framework is able to obtain an optimized cache for Mediabench applications. Compared to a baseline cache memory, our design method reaches an average improvement of 64.43\% and 91.69\% in execution time and energy consumption, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (15)

Summary

We haven't generated a summary for this paper yet.