Papers
Topics
Authors
Recent
Search
2000 character limit reached

Creating Disasters: Recession Forecasting with GAN-Generated Synthetic Time Series Data

Published 21 Feb 2023 in cs.LG, econ.GN, q-fin.EC, and stat.AP | (2302.10490v1)

Abstract: A common problem when forecasting rare events, such as recessions, is limited data availability. Recent advancements in deep learning and generative adversarial networks (GANs) make it possible to produce high-fidelity synthetic data in large quantities. This paper uses a model called DoppelGANger, a GAN tailored to producing synthetic time series data, to generate synthetic Treasury yield time series and associated recession indicators. It is then shown that short-range forecasting performance for Treasury yields is improved for models trained on synthetic data relative to models trained only on real data. Finally, synthetic recession conditions are produced and used to train classification models to predict the probability of a future recession. It is shown that training models on synthetic recessions can improve a model's ability to predict future recessions over a model trained only on real data.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.